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Abstract: This article presents a CMOS implementation of a biologically-inspired neuron. The neuron
accommodates multiple excitatory and inhibitory inputs with digital weights and generates a pulse-width
modulated output waveform of constant frequency based on the level of activation. The behavior of this
implementation is demonstrated and it is shown that combinations of neurons form a complete logic set for
realizing Boolean functions. Simulation results using a VHDL model are presented, along with applications
for pattern recognition and input encoding.
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1 Introduction

Advances in semiconductor technology have led to
an explosion of research activity in VLSI circuit im-
plementation of artificial neural networks. Two im-
portant efforts of late are [1] and [2]. The work pre-
sented in this paper focuses on the implementation of
a pulse-coded neuron [3, 4]. Pulse-coded neurons and
networks constructed from such are attractive be-
cause of their ability to mimic behaviors found in bi-
ological neural systems. Furthermore, pulse streams
have the advantage that they are easy to generate,
possess high noise immunity, and can be distributed
over relatively large regions, the latter facilitating the
construction of very large neural networks using VLSI
circuit technology.

Even within this subcategory there has been a wide
range of approaches, ranging from purely analog to
all-digital implementations [5]. In [6] and [7], Ota and
Wilamowski present a five-transistor voltage-mode
neuron. Each neuron accommodates one excitatory

and one inhibitory input. Synaptic weight multiplica-
tion is realized through sizing of external transistors
serving as active coupling resistors.

Chen and Shi use separate circuits to implement
synaptic multiplication and summing [8]. The multi-
plier cell consists of seven transistors and uses an ana-
log voltage to represent the input weight. The input
voltage is converted to a current, used to charge a ca-
pacitor in an integrate and summing cell. Each sum-
ming cell can accommodate multiple synaptic inputs.
A sigmoid circuit and voltage-pulse circuit generate
the neuron output waveforms. Park et al. employ a
similar architecture, but use binary inputs to control
transistors serving as active resistors and capacitors,
resulting in a programmable RC delay [9].

At the other end of the spectrum, [10] and [11]
present architectures suitable for implementation in
field-programmable gate arrays. Both designs employ
MSI circuits for addition, comparison, and random
number generation.

The goal of this work was to develop a neuron with
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the following characteristics: (1) utilizes binary sig-
nals for controlling the synaptic weights; (2) able to
accommodate multiple excitatory and inhibitory in-
puts; (3) produces a pulsed output, dependent upon
the activation level; and (4) suitable for implementa-
tion in standard digital CMOS processes.

2 Circuit Implementation

In this design the level of neuron activation is repre-
sented by the voltage on a capacitive storage node.
In order to ensure that the neuron returns to a re-
laxed state, even in the absence of inhibitory inputs,
a resistive load is attached to this node, forming a
leaky integrator. The structure of a complete neuron
is shown in Figure 1, with the synaptic input blocks
labeled as Node 1, etc.

2.1 Neuron Inputs

Figure 2 shows the schematic of a single synaptic in-
put. Each input to the neuron, either from other
neurons or fed back from the neuron output, can be
set as excitatory, inhibitory, or both, based upon the
values of the weights, WE2-0 and WI2-0. Additional
inputs to the neuron can be accommodated by repli-
cating this circuit and connecting the output to the
storage node.

To realize an excitatory effect, one or more of the
weights WE2-0 must have a logical value of zero. Pos-
itive pulses on the input will result in the deposition
of charge on the storage node. The PMOS transistors
controlled by the excitatory weights are scaled expo-
nentially to provide a total of seven different charg-
ing rates. This degree of resolution may be insuffi-
cient for certain applications. Excitatory weights of
all ones will disable the input from serving in an exci-
tatory capacity. Inhibitory behavior is realized in the
same fashion using NMOS devices to discharge the
storage node. Because the excitatory and inhibitory
weights are independent, it is possible for a single in-
put pulse to cause both an excitatory and inhibitory
effect upon the neuron.

2.2 Threshold Circuits

Neuron output behavior should be dependent upon
the level of activation. Ideally, the output would be-
come “more active” as the neuron is stimulated in
an excitatory manner. This is accomplished using
multiple Schmitt triggers with different set points,
thus providing a rudimentary approximation of ana-
log to digital conversion. The outputs of the Schmitt
triggers forms a binary control word used in gener-
ating the pulsed output. Different set points can be
achieved through device sizing.

2.3 Pulsed Output Generation

Pulsed output is realized using a ring oscillator with
multiple taps. Each tap provides a waveform with a
50% duty cycle and a period equal to twice the de-
lay of the ring. By logically combining selected taps,
additional waveforms may be created with different
duty cycles but the same period. The binary con-
trol word from the threshold logic selects the appro-
priate waveform based upon the level of activation.
At increasing levels of activation, the neuron output
switches to waveforms of increasing duty cycle. Neu-
rons receiving this output as an input signal, be it
excitatory or inhibitory, will thus experience an in-
creased effect. This is analogous to communicating
more than one bit of information to receiving neu-
rons. A control word of all zeroes disables the ring
oscillator and forces the output to zero.

2.4 Complexity

Table 1 summarizes the transistor count for the indi-
vidual blocks in Figure 1. Generation of the pulsed
output requires the largest number of devices. The
ring oscillator consists of six inverters and a 2-input
NAND gate, for a total of 16 transistors. Forming and
buffering three different waveforms requires ten tran-
sistors. Finally, multiplexing these three waveforms
and generating the disable signal uses 14 devices.

2.5 Behavior

Spice simulation of a single neuron is shown in Fig-
ure 3. This neuron had a single synaptic input and
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Table 1: Number of transistors for each component.

Component # Transistors

Synaptic Input Node (per input) 10

Threshold Circuit (per threshold) 8

Pulse Generation 40

three activation thresholds, requiring a total of 74
transistors. The neuron was stimulated by a wave-
form with a 15 ns period and a 33% duty cycle. The
weights were controlled such that the input was ex-
citatory up until t =100 ns, at which point the input
became inhibitory. Close inspection of the neuron
output waveform reveals the variation in duty cycle
with respect to the voltage on the storage node. Ir-
regular pulses are the result of the multiplexer switch-
ing between waveforms produced by the pulse gener-
ator circuitry.

2.6 VHDL Modeling

While Spice simulation has been useful for investigat-
ing simple neural networks, more complex networks
will require a faster simulation model. We have de-
veloped a VHDL model of the neuron which utilizes
counters and a linear charge rate, dependent upon
the weights, to capture the important characteristics
of the neuron behavior. Examples of this are shown
and compared to the corresponding Spice simulation
in the next section.

3 Applications

Given the flexibility of the neuron there are many
possible applications. We have investigated several to
date. These include implementation of Boolean logic
functions, pattern recognition, and input encoding
using “Time to First Spike” (TFS).

3.1 Boolean Logic Functions

This section illustrates how the neuron may be used
to construct networks that realize Boolean logic func-
tions. From Figures 1 and 2 it is apparent that the

neuron performs the equivalent of a logical OR op-
eration on the excitatory inputs. If the presence of
pulses represents a logical value of ‘1,’ then the be-
havior of an OR gate may be realized by a neuron with
two excitatory inputs and the output fed back as an
inhibitory inputa. The latter ensures that the neuron
returns to a relaxed state when the excitation ceases,
corresponding to a logical value of ‘0.’

A neuron with one excitatory input and two in-
hibitory inputs, including the fed back output, will
realize the Boolean function Z = X · Y . Combined
with the OR-gate neuron, this can be used to form
a network capable of realizing the XOR function, as
shown in Figure 4. The simulation of this network is
shown in Figure 5. The corresponding VHDL simula-
tion appears in Figure 6 and agrees closely with the
Spice simulation. A potential concern is the short-
circuit current drawn when (1) both excitatory and
inhibitory inputs are active and (2) when the voltage
on the storage node is near the switching points of
the Schmitt triggers. Figure 7 shows a plot of supply
current during Spice simulation of the XOR gate.

The XOR gate simulation demonstrates an impor-
tant feature, namely that an inhibitory input can
“annihilate” or “cancel” the effects of an excitatory
input, depending upon the weight settings. This oc-
curs at both neurons N1 and N2 for the input pat-
tern of all ones. The same property can be used to
realize an inverter: a signal which is always pulsed
whenever inputs are active is used as an excitatory
input, and the signal to be inverted is connected as an
inhibitory input. When the output of a neuron con-
figured in this manner is connected to the inhibitory
input of a neuron such as N1 or N2, the resultant
structure realizes the logical AND function. The com-
bination of inversion and logical AND—or OR—forms
a complete logic family, allowing the implementation
of any combinational Boolean function, given an ap-
propriate network.

Finally, the inhibitory effect may be used to im-
plement an XOR function using only two neurons, as
shown in Figure 8. In this configuration, neuron N1
computes a · b. Neuron N2 computes a · b and ORs
the result with the output of N1 to realize the XOR

aWeights can be set to render a synaptic input as solely

excitatory or inhibitory.
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operation. In order to produce the correct response,
the excitatory input b to N2 must be equal in weight
to the inhibitory a input, while the excitatory input
from N1 must be stronger. Spice simulation of this
structure is shown in Figure 9.

3.2 Hopfield Auto-Associative Memory

Figure 10 shows a two-neuron implementation of a
Hopfield auto-associative memory. Training is ac-
complished by analytically solving for appropriate
weight values. Once trained, the memory will retrieve
the stored pattern which is closest in Hamming dis-
tance to the applied input pattern. Figure 11 shows
the Spice simulation of this network with stored pat-
terns, (0,0) and (0,1).

3.3 Linear Pattern Recognition

In this application, a single neuron is used to perform
linearly-separable pattern recognition. The neuron is
configured with five inputs: four inputs correspond-
ing to individual bits of a 4-bit binary word, and a
bias input. The neuron is then trained, starting with
all weights at zero, to output a ‘1’ or a ‘0’, using
the training data shown in Table 2. The distribution
of data is shown graphically in Figure 12. Once the
network is trained, it will correctly classify patterns
from outside the training set. The simulation during
training is shown in Figure 13; the weights cease to
change around 100 us. Figure 14 shows simulation
of the neuron after training, using all possible input
patterns.

Table 2: Training Data for linearly-separable pattern recog-
nition. Six patterns out of 24 were applied during training.

Set Input Patterns

‘1’ Set (0010), (0101), (1000)

‘0’ Set (0011), (0110), (1001)

3.4 Time to First Spike (TFS) Input Encoding

In this application, the input weights and input signal
duty cycles determine the elapsed time until the first

spike from a resting state. For a single neuron with
two inputs, X and Y, the TFS in nanoseconds, T , is
determined by

T ∗ (Wx

X

15
+ Wy

Y

15
−

1

60
) ∗ 0.05 ≥ 2.2,

where X and Y are integers [0, 14], reflecting the duty
cycle of the X and Y input signals, and Wx and Wy

are integers [−7, 7], representing the weights. The
first two terms in the equation model the charging
rates contributed by the X and Y input signals as a
linear combination of the respective duty cycle and
weightb. The third term is a fixed discharge rate
modeling the resistive load. The value of 2.2 V rep-
resents the trigger point of the first Schmitt trigger.
The VHDL simulation of a single neuron with inputs
X = 3, Y = 2, and Wx = Wy = 1, is shown in Fig-
ure 15. A Spice simulation of the same is shown in
Figure 16 for comparison and shows close agreement
with the VHDL model.

4 Conclusions

The design and simulation of a pulsed output neuron
have been presented. While not the smallest neuron
on record, the design does accomplish the original
goals. Furthermore, the amount of flexibility given
the number of devices compares favorably to other
approaches. In particular, the “all digital” nature
of the design should facilitate porting to newer, ad-
vanced semiconductor processes.

We have demonstrated the capability of imple-
menting Boolean functions and pattern recognition
networks. Currently we are designing a test chip for
a 1.5 um CMOS process. Future efforts will focus
on the following: (1) improving the simulation speed
and accuracy of the VHDL model; (2) investigation
of effective training mechanisms; (3) design and fab-
rication of massive neural networks; and (4) identifi-
cation of additional applications.
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bA negative weight corresponds to an inhibitory input and
results in discharging.
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Figure 1: Block diagram of a single neuron with multiple
synaptic inputs. Threshold circuits consist of multiple Schmitt
triggers, with different set points, forming a digital control
word. The pulse generator varies the output duty cycle in
response to this control word.

Input Storage Node

WE1

WI2 WI1 WI0

WE0WE2

Figure 2: Schematic of a single synaptic input. Transistors
labeled WE2-WE0 represent excitatory weights and are scaled ex-
ponentially; WI2-WI0 are inhibitory weights. The storage node
is charge or discharged, based upon the weights, in response to
an input high signal.
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v(vout)

Figure 3: Simulation of a single neuron under excitatory, then
inhibitory, stimulus. The two waveforms are the voltage on the
storage node, v(store), and the voltage at the neuron output,
v(vout).
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Y

Z

N1

N2

N3

Figure 4: Neural network to realize a Boolean XOR gate. Ex-
citatory and inhibitory weights are equal strength, allowing ac-
tive signals on the inhibitory inputs to “cancel” active signals
on the excitatory inputs.
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Figure 5: Simulation of the XOR gate.
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Figure 6: VHDL simulation of the XOR gate. The input pat-
tern (0,0) is not shown.
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Figure 7: Power supply current during XOR simulation. The
majority of the power is dissipated by the Schmitt triggers and
the ring oscillator when the output is active.
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b
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Figure 8: Two-neuron XOR gate. Excitatory and inhibitory
weights for a and b are equal in strength; the input signal from
N1 is stronger than a.
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Figure 9: Simulation of the two-neuron XOR gate.
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Figure 10: A two-neuron Hopfield network, implementing an
auto-associative memory for pattern recognition. The weights
(not shown) determine the stored patterns.
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Figure 11: Simulation of the Hopfield network. The weights
were solved analytically to store the patterns (0,0) and (0,1).
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Figure 12: Distribution of training data. Vertical axis marks
the leftmost two bits from the input patterns and the horizontal
axis is the rightmost two bits. Once trained, the network will
appropriately classify patterns from outside the training data.
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Entity:neu_pattern   Architecture:neu_pattern1       Date: Tue Sep 17 16:35:47 2002  Page 1

/neu_pattern/xi

/neu_pattern/u1/w1 0 -1 -2 -3

/neu_pattern/u1/w2 0 1 0 0 -1 -1 -1

/neu_pattern/u1/w3 1 0 -2 -3 -3

/neu_pattern/u1/w4 0 -1 -1 -2 -1 -2 -2 -1

/neu_pattern/u1/w5 1 1 2 2 3 3 4 4

/neu_pattern/vco_o1

/neu_pattern/t_mode

/neu_pattern/set

Figure 13: VHDL simulation of linear learning during train-
ing. The signal t mode is used to enable training and the signal
set represents the desired output for specific patterns from the
training set, labeled xi. Note that the weights have stopped
changing by 100 us.
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Entity:neu_pattern   Architecture:neu_pattern1       Date: Tue Sep 17 16:31:53 2002  Page 1

/neu_pattern/xi 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1

/neu_pattern/u1/w1 -3

/neu_pattern/u1/w2 -1

/neu_pattern/u1/w3 -3

/neu_pattern/u1/w4 -1

/neu_pattern/u1/w5 4
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Figure 14: VHDL simulation of linear pattern recognition
after training. All possible input patterns are now applied to
the network.

0 ps 50 ns 100 ns 150 ns 200 ns

Entity:orbench   Architecture:bench1       Date: Mon Sep 16 17:38:06 2002  Page 1
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Figure 15: VHDL simulation of TFS encoding. The duty
cycle of x = 3/15 and y = 2/15. The weights, Wx and Wy are
both set to one.
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Figure 16: Spice simulation of TFS encoding.
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