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Abstract: - Application for a biologically inspired pulse-coded CMOS neuron, Hopfield auto-associative 
memory is presented. Given corrupted versions of the stored images, the trained network will able to recall the 
corresponding stored image near in Hamming distance (HD). 
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1   Introduction 
The work presented in this paper focuses on the 
application of a pulse-coded CMOS neuron 
developed by Liu and Frenzel [1]. The functionality 
of a biological neuron can be found in electrically 
stimulated pulse coded neurons. Circuits based on 
pulse stream encoding techniques with current as an 
external stimulus can be realized as pulse coded 
neural networks (PCNN). In PCNN, circuits 
weighting and summing of stimulating inputs are 
done to control the firing rate of a pulse generating 
circuitry [2]. Faster PCNN can be built for circuits 
with dedicated functionality for which the 
connectivity requirements are less [3]. 
 
The basic structure of the CMOS neuron is shown in 
Fig. 1. The neuron has multiple synaptic inputs, 
which are connected to a capacitive storage node. 
This storage node is connected to a threshold 
circuits block, which is followed by a ring oscillator 
to provide the final output of the neuron. Each 
synaptic input can be programmed as excitatory 
and/or inhibitory based upon the values of stored 
binary weights, WE2–0 and WI2–0. The storage 
node voltage is converted to a digital control word 
by multiple threshold circuits for control of the pulse 
generator circuit. The pulsed nature of the neuron 
output enables the construction of pulse-coded 
neural networks (PCNN). The use of programmable 
weights allows for the implementation of learning, 
adaptation, and reconfiguration. Garcia-Lamont et 
al. [4] demonstrated clustering and classification of 
data by neurofuzzy techniques using CMOS current-
mode circuits with fixed weights. These simple 
analog current-mode circuits can approximate 

complex arithmetic processes that appear in 
neurofuzzy systems. 
 
2   Problem Description 
Hopfield associative memory is an auto-associative 
memory [5] used to “store and recall” a set of bit-
map images. Hopfield introduced an associative 
memory model with emergent collective properties 
like familiarity recognition, categorization, error 
correction, time sequence retention and 
generalization [6]. Implemented algorithms using 
Hopfield networks have found wide applications in 
associative memory, A/D conversion and 
optimization problems [7]. Properties of HD are 
demonstrated in [7]. Given any N-bit input, the 
network output settles on an N-bit stored pattern, 
which has the least HD from the input. 
 
3   Problem Solution 
A 4-Hopfield network as shown in Fig. 2 is 
constructed and the patterns (1,0,1,0) (0,1,0,1) 
(0,1,1,0) & (1,0,0,1) are stored.  The input patterns 
are mapped to the stored patterns with respect to the 
HD, resulting in correct theoretical outputs for these 
patterns. These input-output mappings are shown in 
Table. 1.  
 
The weight matrix is calculated for the 4-bit 
Hopfield network and the resulting weights are 
imposed on the network connections. This weighted 
network is trained to produce a final weight matrix 
for the best convergence of the output. Increasing or 
decreasing the weights by checking the charge on 
the storage node to meet the threshold and by 
checking the output to be correct for all the input 
combinations performs the training. This process is 



repeated until good convergence on the output is 
observed. Changing the thresholds of neurons in the 
network by changing the Schmitt triggers inside the 
neurons can also be useful for training. It is 
beneficial in cases where the output of the neuron is 
used as an input to other neuron and vice-versa. 
 
Calculating synaptic weights for N-bit Hopfield 
network: For storing ‘n’ patterns, the weight matrix 
for the Hopfield network, W can be computed as 
follows [8]. 
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where, Sp is the pattern to be stored and Sp

T  the 
transpose. 
 
The weight matrix is symmetrical and its dimension 
depends on the number of bits of the input pattern. 
The size of weight matrix for a N-bit Hopfield 
network is N*N. The increase in the size of the 
network with respect to the increase in number of 
bits of the input patterns is quadratic. 
 
4   Conclusion 
Simulations were performed using Microsim Pspice 
with models for a 1.2 micron CMOS process. Each 
input combination was applied for a period of 125 
Ns in binary order. The simulation results are shown 
in Fig. 3 and are in agreement with Table 1. 
 
This successful application implies the validity of 
testing of the neuron developed by Liu and Frenzel 
[1]. 
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Table 1 Input stimulus and desired 
outputs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 1 Block diagram of a single 
neuron with multiple synaptic 
inputs, each independently 
programmable as excitatory or 
inhibitory. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Network topology for 4-
Hopfield associative memory. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3 Waveforms correspond to 
the four neurons in Fig. 2 and 
indicate autoassociative recall of 
patterns shown in Table 1. 
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