
Frequency Domain Magnitude Banded LMS Algorithm for

Equalization of Rapidly Time Variant Channels

Mohammed H. Wondimagegnehu1, Tetsuya Shimamura2 and Colin F.N. Cowan3

1,2Department of Information and Computer Sciences
Saitama University, Saitama 338-8570, JAPAN.

3Department of Electrical and Electronic Engineering,
The Queen’s University of Belfast, Belfast BT9 5AH,

UNITED KINGDOM.

Abstract: - Frequency domain adaptive filtering has become increasingly popular due to its compu-
tational efficiency and excellent adaptation behavior. This paper proposes a new frequency domain
based magnitude banded least mean-square(FDMBLMS) algorithm for the purpose of equaliza-
tion of a rapidly time-variant channel. FDMBLMS implements a non-linear adaptation procedure
based on the magnitude level of the Fourier transform of the channel output. Computer simulation
results obtained by using a second order Markov communication channel model shows that the
proposed FDMBLMS algorithm provides a significant performance improvement compared to the
standard frequency domain LMS as well as the existing time domain uniform amplitude banded
LMS algorithms.
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1. Introduction

Rapid time variation and multipath fading are
the most serious problems affecting the reliability
of communication systems such as mobile radio
channels and high frequency(HF) channels. Due
to the phenomenon of time variation these chan-
nels suffer from intersymbol interference(ISI). To
compensate for channel distortions which cause
ISI in communication systems, adaptive equaliza-
tion techniques can be used [1].

The most common adaptive equalization
method is based on the least-mean-square(LMS)
algorithm[2] which updates the filter coefficients
by a gradient based method in the time domain.

For the purpose of time variant channel es-

timation, Clark et.al[3] and Mclaughlin et.al[4]
have shown that the LMS algorithm is suitable
in a transversal filter structure due to its cost ef-
fectiveness.

Recently, Shimamura et.al[5], [6] derived a
new LMS based nonlinear adaptive algorithm,
called amplitude banded LMS(ABLMS) algo-
rithm, which takes into account the amplitude
information of a time-variant channel output in
the coefficient adaptation process of the equalizer.
It was shown that if the channel output is cor-
rupted by white Gaussian additive noise uncor-
related with the input signal and when a second
order Markov communication channel model is
used, the ABLMS algorithm exhibits better per-
formance than the conventional LMS algorithm



for the purpose of equalization of time-variant
multipath channels with only a small increase in
computational complexity.

On the other hand, it is known that by im-
plementing adaptive filtering in the frequency do-
main, great improvements in the convergence rate
over the conventional time domain approach are
achieved[7]. Moreover in [8] various types of the
transform-domain LMS algorithm were used in
tracking a class of time-varying plants.

In this paper, an ABLMS-like algorithm
called frequency domain magnitude banded
LMS(FDMBLMS) algorithm is proposed. Our
motivation for considering such an adaptive algo-
rithm is to retain the relative simplicity and bet-
ter bit error rate(BER) performance the ABLMS
algorithm has provided over the conventional
LMS algorithm and yet to incorporate some of
the benefits of the computational efficiency and
faster tracking performance gained by frequency
domain adaptation of equalizer coefficients. The
resulting FDMBLMS algorithm is verified to be
more robust in tracking rapidly time-varying
channels than both the original ABLMS and the
standard frequency domain LMS algorithms.

In the next section, the basic concepts of
frequency domain adaptive algorithm are intro-
duced. Section 3 discusses in detail the con-
figuration and the formulation of the proposed
FDMBLMS algorithm. Section 4 presents the ex-
perimental results obtained by computer simula-
tions using a second order Markov communica-
tion channel model. Section 5 serves as the con-
clusion of the paper by summarizing the results
of the proposed method.

2. Frequency Domain Adaptive Algo-
rithm

Frequency domain adaptive filtering can be per-
formed by Fourier transforming the input-signal
vector and weighting the contents of each fre-
quency bin[7],[9]. Figure 1 is a symbolic repre-
sentation of the frequency domain adaptive filter.

The input signal is filtered by a bank of band-
pass filters, implemented digitally by the discrete
Fourier transform(DFT).

The vector Zn

Zn = [zn0, zn1, ..., zn(N−1)]
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Figure 1: Symbolic representation of the fre-
quency domain adaptive filter.

is related to the input vector Xn by the orthogo-
nal transformation:

Zn = WXn. (2)

where W is an N ×N DFT matrix whose (p,q)th
element is exp(−j2πpq/N). The output and the
corresponding error signal are

yn = ZT
n Bn (3)

and
εn = dn − yn (4)

respectively, where

Bn = [bn0, bn1, ..., bn(N−1)]
T (5)

is the frequency domain weight vector. The com-
plex LMS algorithm[10] is used to recursively up-
date the weight vector Bn. The weight vector
update equation is

Bn+1 = Bn + 2µΛ−2εnZ̄n (6)

where µ is the adaptive step size and Λ2 is N×N
diagonal matrix whose(i,i)th element is equal to
the power estimate of the ith DFT output zni.
Equations (3), (4) and (6) provide the fundamen-
tal adaptation concept of FDLMS algorithm.



3. The Proposed Method

3.1 Channel Model

The channel model assumed in this paper is given
by

xn =
L∑

i=0

hi(n)un−i + vn (7)

where ho(n), h1(n), ..., hL(n) are the channel co-
efficients, un is the transmitted sequence, and vn

is a white Gaussian noise uncorrelated with un.
The channel output xn becomes the input for the
equalizer.

3.2 FDMBLMS Algorithm

In implementing the FDLMS algorithm, the vector
recursion(6) can be decomposed into the follow-
ing N scalar recursions[11].

Bi(n+1)=Bi(n)+2
µ

σ̂2
z,i(n)

e(n)zi(n),i = 0, 1, ..., N−1

(8)
where

Z(n) = DFT [X(n)] (9)

and σ̂2
z,i(n) is an estimate of E[z2

i (n)]. The
σ̂2

z,i(n)s are the estimates of the signal powers at
various taps of the filter and can be obtained us-
ing the recursion:

σ̂2
z,i(n)=βσ̂2

z,i(n− 1)+(β−1)z2
i (n),i = 0, 1, ..., N−1

(10)
where β is a positive constant close to but less
than one.

When b(n) and z(n) are given by
b(n) = (b0(n), b1(n), ..., bM−1(n))T and
z(n) = (zn, zn−1, , , , zn−M+1)T , respectively,
Equation(8) provides the FDLMS adaptation
procedure for an M length LTE.

For the frequency domain magnitude banded
algorithm to be proposed here, in the case of an
LTE, a Q by M coefficient matrix Ba(n) is pre-
pared, elements of which are given by bij(n), i =
1, 2, ..., Q, j = 1, 2, ..., M . The Ba(n) is ini-
tialized at n = 0 where all the elements are
set to zero. For the adaptation of the algo-
rithm, the elements of Ba(n) are updated based
on the operation of switching the elements to
be updated; in such a fashion that among the

Q by M elements of Ba(n), only M elements,
bq(j)j(n), j = 1, 2, ..., M , are selected for each iter-
ation and a coefficient vector is formed as ba(n) =
(bq(1)1(n), bq(2)2(n), ..., bq(M)M (n))T where q(j) is
an integer and determined based on the magni-
tude level of each element zn−j+1 of the vector
z(n) for j = 1, 2, ..., M as follows:

• if |zn−j+1| ≤ Zmax/Q, then q(j) = 1.

• if Zmax/Q < |zn−j+1| ≤ 2Zmax/Q, then
q(j) = 2.

• if 2Zmax/Q < |zn−j+1| ≤ 3Zmax/Q, then
q(j) = 3.

• .

• .

• if (Q− 1)Zmax/Q < |zn−j+1|, then
q(j) = Q.

The Zmax denotes the maximum magnitude of
the frequency domain equivalent of the received
sequence and Q corresponds to a division number
to classify the magnitude level of the frequency
domain equivalent of the received sequence. The
output of the filter whose coefficient vector is
ba(n) is obtained by convolution between ba(n)
and z(n). Thus, the coefficient vector is also up-
dated by the FDLMS algorithm (8), but with
b(n) replaced by ba(n). This algorithm is what
we regard as the FDMBLMS algorithm through-
out this paper.

To summarize, in the proposed method, the
whole magnitude band of the frequency response
of the channel output is first uniformly divided in
to small classes in such a manner that

A2 −A1 = A3 −A2 = ... = AQ −AQ−1 =Zmax/Q
(11)

where A1, A2, ..., AQ stand for each division class.
Then, only the coefficients which correspond to
the frequency bins in the chosen class of the di-
vided band are selectively updated instead of the
whole coefficient matrix.

The FDMBLMS algorithm would update all
the elements of the coefficient matrix B(n), be-
cause the input sequence is statistically dis-
tributed on a time variant channel. For each
iteration, the FDMBLMS algorithm has M co-
efficients to be updated in the same manner as



the standard FDLMS algorithm has. Therefore,
the computational complexity of the FDMBLMS
algorithm is quite comparable with that of the
standard FDLMS algorithm.

The coefficient selection for each iteration in
the FDMBLMS algorithm is based on the mag-
nitude information of the DFT of the received
sequence. Since we can determine the pattern
of the channel impulse response from the mag-
nitude response as well as the phase response of
the Fourier transform of channel output, we can
easily see that the magnitude of the frequency
response of the received sequence is directly as-
sociated with the channel coefficients. Whenever
the frequency transform of the received sequence,
zn, is allocated to one particular range among
the Q ranges based on its magnitude level, only
the coefficient corresponding to that range is al-
ways selected and updated in the FDMBLMS al-
gorithm. Due to this fact, the time variation in-
fluence from the channel for the coefficient cor-
responding to that range may be decreased ap-
proximately by a factor of Q. This results in an
adaptation where the influence of time variation
of the channel is proportionally alleviated by a
factor of Q. Therefore, even though all the ele-
ments of the coefficient matrix in the FDMBLMS
algorithm are not updated for each iteration, the
coefficients being selected and updated for each
iteration are strongly related with the previously
updated coefficients for each banded range. As a
result, the number of updates for the coefficient
corresponding to each banded range is decreased,
and the convergence speed of the adaptive algo-
rithm does not deteriorate[6].

3.3 Parallel Adaptation

Figure 2 shows a block diagram of the FDMBLMS
equalizer in which the training mode is assumed
(a delayed transmitted sequence is given at the
receiver side). The FDMBLMS equalizer con-
sists of two linear transversal equalizers whose
coefficients are updated by the FDMBLMS and
FDLMS algorithms, respectively. LTE(I) and
LTE(II) are two linear transversal equalizers with
the same filter length.

The superior tracking performance of the
FDMBLMS algorithm might not be always guar-
anteed for all the adaptation process, due to
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Figure 2: Configuration of the proposed FDM-
BLMS LTE.

the non-linearity which the magnitude banded
technique inherently has. Magnitude ambigui-
ties sometimes cause an unstable phenomenon
which appear as “spikes” in the mean square er-
ror convergence. This is possibly because the
magnitude response of the channel output can
not be perfectly and uniquely associated with the
channel coefficients. For example, it is possible
that different channel coefficient pairs might pro-
vide with same magnitude response channel out-
puts. Therefore, a parallel adaptation scheme is
here utilized to at least retain the performance
of the conventional FDLMS in case of sudden
instability. The two LTEs are individually up-
dated based on the error sequences ean and en,
respectively. The comparator provides fn = ean

if (ean)2 ≤ (en)2 and fn = en otherwise. Based on
the comparator output, the FDMBLMS-FDLMS
LTE outputs yan when fn = ean, and yn when
fn = en. As the FDMBLMS-FDLMS LTE re-
quires a parallel adaptation of the FDMBLMS
algorithm with the FDLMS algorithm, the re-
sult is that the whole computational complexity
for implementing the FDMBLMS-FDLMS LTE
is approximately twice of that required for imple-
menting the FDLMS LTE. However, with VLSI
digital processors having increased computational
resourses becoming cheaper and readily available,
the benefit of the proposed parallel structure is
far more advantageous.

4. Performance Evaluation on a Time
Variant Channel

The performance of the proposed FDMBLMS LTE
equalizer shown in Figure 2 was investigated us-



ing a second order Markov communication chan-
nel model. The channel is given by:

H(z) = h0(n) + h1(n)z−1 + h2(n)z−2 (12)

where the time variant coefficients, h0(n), h1(n)
and h2(n) are generated by passing Gaussian
white noise at 2400 sample/s through second or-
der Butterworth filters with 3 dB bandwidths on
the order of the fade rate. The input sequence of
this channel is an uncorrelated, pseudo-random
sequence with values of +1 or −1. This channel
is an HF channel model H3(z) used in [12].
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Figure 3: Comparison of MSE convergence at
Q = 2 and channel fade rate fd = 5Hz.
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Figure 4: Comparison of MSE convergence at
Q = 4 and channel fade rate fd = 10Hz.

Figures 3 shows mean square error(MSE) con-
vergence plots for the conventional LMS(dash
line), original ABLMS(solid line), standard
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Figure 5: Comparison of BER performance at a
channel fade rate of 5Hz for Q = 4.
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Figure 6: Comparison of BER performance at
SNR = 20dB for Q = 4.

FDLMS(solid line with diamond) and the pro-
posed FDMBLMS(solid line with asterisk) algo-
rithms at a division number Q = 2 and a channel
fade rate fd = 5Hz. Q = 2 implies division of the
whole magnitude band into 2 small classes. Fig-
ure 4 shows MSE convergence plots for the con-
ventional LMS(dash line), original ABLMS(solid
line), standard FDLMS(solid line with diamond)
and the proposed FDMBLMS(solid line with as-
terisk) algorithms at a channel model with a fade
rate fd = 10Hz and Q = 4 when dividing the
whole magnitude band into 4 small classes. A
training sequence of 1000 data samples with an
additive noise of SNR = 20 dB were used. The
equalizers have a filter length of M = 10 and a
delay d = 5 and the constant parameters have
been commonly set to µ = 0.005 and β = 0.9.



From Figures 3 and 4 we can observe that the
proposed FDMBLMS algorithm is more conver-
gent than the conventional LMS, original ABLMS
and standard FDLMS algorithms. It also retains
the lowest steady state MSE value. This implies
that the proposed FDMBLMS provides the best
tracking capacity of rapidly time varying channels
among the four algorithms.

Figure 5 illustrates the BER performance at
Q = 4 for the conventional LMS(dash line), orig-
inal ABLMS(solid line), standard FDLMS(solid
line with diamond) and the proposed FDM-
BLMS(solid line with asterisk) algorithms against
additive noise on a channel model with a channel
fade rate of fd = 5Hz.

Figure 6 illustrates the BER performance at
Q = 4 for the conventional LMS(dash line), orig-
inal ABLMS(solid line), standard FDLMS(solid
line with diamond) and the proposed FDM-
BLMS(solid line with asterisk) algorithms against
channel fade ratefd on a channel model corrupted
with an additive noise of SNR = 20dB.

The equalizers used in Figures 5and 6 have a
filter length of M = 6 and a delay d = 3 both
of which provided the best performance for the
filter structure used. The step size parameters
have been optimized to µ = 0.5 for the conven-
tional LMS and the original ABLMS algorithms
while it was optimized to µ = 0.08 in case of
the standard FDLMS and the proposed FDM-
BLMS algorithms. The power normalization fac-
tor β = 0.9 and 50,000 data samples have been
commonly used in the training mode.

From Figures 5 and 6 it is clear that the BER
performance of the proposed FDMBLMS algo-
rithm is significantly better than those of the
conventional LMS, original ABLMS algorithm
and the standard FDLMS algorithms. Moreover,
from Figure 6, we observe that the proposed al-
gorithm is highly robust against increase in fade
rate. This implies that the proposed FDMBLMS
has the best capability of compensating for ISI
under even severe fading channel conditions.

5. Conclusion

A novel magnitude division frequency domain
LMS algorithm known as FDMBLMS algorithm
has been proposed for the purpose of equaliza-
tion of rapidly time-variant multipath channels.

Observation of simulation results have demon-
strated that the proposed FDMBLMS algorithm
has highly outsmarted the conventional LMS-
LTE, the original ABLMS as well as the standard
FDLMS algorithms in convergence and tracking
performances.
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