
Simulation Environment for Distance based Location Algorithms in
Wireless Sensor Networks

JAGOBA ARIAS, JESÚS LÁZARO, JAIME JIMÉNEZ,

AITZOL ZULOAGA, ARMANDO ASTARLOA
Department of Electronics and Telecommunications

University of the Basque Country
Alda. Urquijo s/n. 48013 Bilbao, Vizcaya

SPAIN

Abstract: - In the last years, a remarkable research effort has been made in the area of wireless sensor networks.
One of the main advantages of this kind of distributed system is the ability to determine the position of its nodes
and the events sensed. Therefore, a simulation framework is required to compare the different location
algorithms that could be used in a certain environment, in order to decide which one is the most suitable method
for determining the position of a node or target, as well as to identify the weaknesses and strengths of every
algorithm. In this paper, we describe a simulation environment, for distance based location algorithms to be used
in wireless sensor networks.

Key-Words: - wireless sensor networks, DoA, location, simulation, Monte Carlo

1 Introduction
The evolution of wireless networks has suffered a
huge boost in the last years. Due to the availability of
low cost and low power RF transceivers, many new
applications, where small and inexpensive wireless
nodes cooperate to perform complex tasks, have
arisen. One of these applications is wireless sensor
networks. In this kind of wireless networks, each
node senses and takes measurements of a certain
physical magnitude, which is geographically
distributed. The main objective of this network is to
obtain a map of this magnitude, so that it can be
monitored (e.g. by a human operator) remotely from
a unique location.
 However, the cooperation level required for these
monitoring tasks involves complex high-level
operations, such as packet routing and path finding
[1][2], many of which may be terribly simplified if
the exact location of all nodes is known. For example,
a node could decide if it should forward a packet to
one of its neighbors if it is closer to the final
destination of the packet than its sender. Furthermore,
some of the operations of the wireless sensor network
could become unmeaning if the location of the nodes
is unknown. Let us suppose that the network must
monitor the pressure of a certain gas along a pipe.
Just knowing that node 0x3F26 is measuring 2 atm is
completely useless if we ignore the position of this
node. Some of the applications may even lie strictly
on the location of the nodes:

• In a medical facility, a wireless sensor may
be useful to locate some members of the
medical staff quickly, in order to attend a
patient quickly.

• In large storage areas, such as harbors or
airports, a location finding scheme could ease
the management of the space, by quickly
establishing where specific containers are.

• National parks could find the position of a
certain specimen quickly within a vast land
extension, which would help the authorities
protecting the endangered species from
furtive hunters and control their demographic
evolution.

 Although there are some commercial global
location systems, such as GPS [3], they are usually
based on satellites to provide the service all over the
world, which makes the system useless indoors (e.g.
hospitals and other facilities) and under foliage, due
to the signal absorption produced by roofs and leaves.
Therefore, a terrestrial location algorithm needs to be
implemented in wireless sensor networks to provide
this service.
 This paper is organized as follows: section 2
describes the nature of the location problem and the
most usual approaches to its solution. In section 3, we
describe the requirements of a simulation application
for the location process within a wireless sensor
network. The conclusions of this work are presented
in section 4.

Fig. 1: The two main methods for finding the position of a target. The patterned circles represent the targets and
the white ones represent beacons. (a) Distance of Arrival and (b) Angle of Arrival.

2 Problem Formulation
Let us suppose we know the exact position of N
nodes (which from here onwards will be referred as
beacons) of a certain wireless network and we want
to estimate the position of another node (the target).
To perform this task, the beacons will emit some kind
of signal and the target will measure the
characteristics of the received signals. Studying how
the environment has affected the propagation of the
signal, some information from the geographical
location of the target may be obtained:

• If all the nodes have directive emitters and/or
receivers, the direction of the target from a
certain node may be estimated. If we know
these data for a sufficient number of beacons,
we may trace lines from each beacon
following the correspondent direction. The
point where all the lines meet is the position
of the target. This location method is known
as Angle of Arrival (AoA) [4][5].

• The distance between a beacon and the target
affect the reception of the signal in two
different ways: it attenuates its power and it
produces a delay. Measuring these distances,
we may find the position of the target by
tracing circles (or spheres) with the center in
the position of the beacons and the distances
to the target as radii. This location method is
known as Distance of Arrival (DoA)
[6][7][8].

• If the target is moving respect to the beacons,
the frequency measured at the reception of

the signal is different from the actual emitted
frequency due to the Doppler Effect. This
frequency drift depends on the direction of
the movement of the target and the relative
position of the beacon and the target, which
may be used to estimate its position [9][10].

 If the wireless network is built from small and
inexpensive nodes, the different measurements are
expected to contain some error. However, due to the
intrinsic nature of wireless sensor networks, where all
the nodes cooperate to fulfill their sensing purposes,
the effect of this error may be reduced. The
simulation platform described in this article will be
used to quantify the performance of the different
location DoA algorithms for wireless sensor
networks, in order to compare them and establish
some kind of merit function for them.
 The most common schemes to measure the distant
between two nodes are the following:

• Measuring the flight time of a signal from
one node to the other leads the system to
know the distance between the both of them.
This requires that the speed of the traveling
wave is known and constant, and that the
time of flight is large enough to be measured.
For example, using RF signals indoors,
where the distances are only some meters
long, to perform this kind of measurement
requires complex receivers, which must be
able to measure very short periods of time (of
about some nanoseconds) and, in these cases,
some other kinds of signals (e.g. sound

(a) (b)

signals) are preferred for these kinds of
scenarios. These methods are known as ToA
(Time of Arrival) [6].

• ToA algorithms usually provide good
performance for measuring distances.
However, when the distances are short they
normally require two different signal
processing units: one for the communication
(usually RF) and a second one for measuring
distances (typically ultrasounds). In these
cases, a simple (yet inaccurate) way of
estimating distances is to measure the power
of the received signal. The longer the
distance between the two nodes is, the greater
the attenuation will be. This kind of
algorithms is called PoA (Power of Arrival)
[11][12][13].

 DoA schemes are the most commonly used
location algorithms, because they require relatively
simple hardware: for instance, AoA schemes are
based on rotating antennas or electronically
configurable antenna arrays.

3 Simulation platform
Every DoA location algorithm needs the same kind of
data to compute the position of the target: the number
of beacons that have detected the target, their
positions and the estimated distances to the target.
However, depending on the characteristics of the
location algorithms, these data will be corrupted with
errors, whose magnitude and features may vary.
 The general procedure for estimating the behavior
of different location algorithms is the following:

1. Deploy the beacons and the target in the
scenario.

2. Calculate the real distances between the
target and each node.

3. Corrupt the distances with error, to simulate a
real environment.

4. Corrupt the position of the beacons with
error.

5. Estimate the position of the target and
calculate the location error made.

 This procedure must be repeated a sufficiently
large number of times, in order to eliminate any kind
of effect, due to certain beacon alignment or to the
appearance of an unusually high error in distance
estimations.

3.1 Scenario description
The chose scenario is a three-dimensional cube,
whose side is a simulation parameter. The default

value for this dimension is 10 m, which defines quite
a big area: if the typical height of a floor in a building
is 2.5 m, it corresponds to a 4 floor building, where
each floor is100 m2
 The nodes (both beacons and target) are deployed
in this scenario at random, following a uniform
distribution. No other kind of probability distribution
is allowed here, for the following reasons:

• The side of the cube determines exactly the
volume of the zone of interest. A normal
distribution, for example, could allow that a
node (beacon or target) would be placed
outside our cube.

• The expected distances among nodes are
directly related to the side of the cube. Thus,
the relation between the distance estimation
error (see section 3.2) and the expected
distance between nodes is simple to obtain.
This ratio gives an idea of how good a result
is, i.e. the relationship between the relative
error in distance and the three-dimensional
location error.

• There is no a priori knowledge of the relative
positions of the beacons and the target. In the
real world, they could be placed anywhere, so
there is no reason for giving a greater
preference to a certain zone (e.g. someone
could find placing the nodes close to the
center of the region reasonable, whilst in
some applications, the corners of the regions
could give better practical results, due to the
effect of environmental factors, such as
obstacles, which could reduce the lengths of
the wireless links).

3.2 Distance estimation error
The distance estimation error measures the
uncertainty in the measure of distance. In the real
world, this error has two different components: one of
them varies with time and represents the probability
of getting two different results when measuring the
same magnitude twice using the same method. This
kind of error can be reduced simply by performing a
large number of measurements and calculating their
average value. However, there is a second source of
error, which cannot be completely wiped out with
repetition: the systematic error. Examples of this kind
of error can be found both in ToA and DoA
algorithms and are usually produced by the the
presence of an obstacle in the surroundings of both
bodes. This interference may fake the measurement
in two different ways: the wave may reflect against
the obstacle increasing the time of flight (in ToA
schemes) or the obstacle may attenuate the power of

the signal, making the target seem that it is further
than it really is (in PoA systems). In general, PoA
schemes are more sensitive than ToA algorithms,
because both effects (reflection and attenuation) have
a great impact in distance estimation (the reflected
wave has a longer path, which implies larger free
space losses, some power is lost in the reflection and
it will interfere with the LOS wave, altering the
measured power).

Fig. 2: Possible distance measurement perturbations
both for ToA and PoA schemes.

 The different sources of error in the estimation of
the distance between two nodes produce different
stochastic behaviors for this parameter. Depending on
the nature of the location algorithm under test, the
accuracy of the position estimation may vary
according to the probability function of the error.
Therefore, the simulation platform offers the
possibility of using three different types of error
distribution: Gaussian, uniform and lognormal.
 The process of polluting the distance estimations
with error is simple: in the very first place, the actual
distances between the beacons and the target are
computed. These values would be the exact result of
the estimation process. However, as the presence of a
certain amount of error is needed, the distances,
which the algorithm under test will use, will be
calculated as random numbers, whose average values
are the actual distances and their standard deviation
may be introduced by the user. Thus, depending on
the scenario, different amounts of error rates may be
introduced. This allows the user to decide which
algorithm is most suitable for an application, where
coarse errors are expected.

3.3 Beacon position error
In all location systems, the position of the beacons
must be known a priori. As distance based location
algorithms require that the beacons are placed at
known positions, they may be sensitive to some error
made in the location of these nodes. If the location
algorithm is going to be used recursively in a wireless
sensor network, so that after the location of a node

that node becomes a beacon to extend the location
service throughout a geographically large area, the
location error made at some point of the algorithm
will make that all the subsequent estimation
procedures will use an erroneous datum as premise,
thus propagating the error.
 The proposed simulation platform allows the user
to include two different kinds of error distribution
(normal and uniform), which are used to corrupt the
real values in an additive way. Thus, the user may
test how sensitive an algorithm is to the presence of
this kind of error, and decide if it is suitable for a
multihop location service without human interaction.

3.4 Location algorithms
The different location algorithms are written
independently in C, sharing the same interface. Thus,
the simulation platform may be indefinitely updated
to suit the needs of users, which want to test their
own algorithms or even keep the platform up to date.
The prototype of these function should follow this
scheme:

result algorithm(beacons *b, int
NumberofNodes, double *distances)

The implementation of the algorithms must provide
two different data: the estimation of the position of
the target and an estimation of the required
computational cost of that algorithm. The definition
of this cost varies depending on the user’s interests:
for complex and varied algorithms, it may simply be
the time required to compute the position or it may be
something simpler to extend to other platforms, such
as number of iterations, etc.

3.5 Gathering results
The results of all position estimations are gathered
and summarized using first and second order
statistics. Thus, the mean value of the location
estimation error represents the bias of the expected
result. Ideally, the average should tend to the null
vector, showing that algorithm does not make
systematic errors. However, the presence of some
systematic error is not really a big problem, because
it can be solved easily by correcting artificially the
position (by subtracting the mean value of the error
vector).

∑
=

−=
L

i
act

i
est

i
e rrm

1

)()(rrr
 (1)

 The second order statistic obtained from the
collected results is the standard deviation of the

TX RX

Reflection (ToA)

Attenuation (PoA)

Obstacle

estimation error. This measures the expected distance
of the error vector to its average value. High values of
this parameter mean that the location algorithm does
not provide accurate results. As a matter of fact, this
parameter measures the accuracy of a certain
algorithm, which may be used for comparing two
different algorithms.

L

mr
d

L

i
eest

e

∑
=

−
= 1

2rr

(2)

 Quite often, the behavior of an algorithm as some
simulation parameters vary must be stated. This short
of simulation capability involves running a large
number of simple simulations, where most
parameters remain unchanged, and one of them is
altered orderly to obtain a function. The simulation
results are saved in a file, using an easy to read
ASCII format, so that they can be post-processed for
plotting using any standard tool.

4 Results
This simulation platform has been tested using three
different location algorithms:

• The random algorithm: this trivial location
algorithm tries to find the position of the
target without using the measured distances.
Its behavior is quite simple: it builds the
smallest parallelepiped which contains all the
beacons. Then, it chooses a position within
this region at random, which will be the
selected position for the target. As this
algorithm does not use the measured
distances, its accuracy is independent from
the distance error. Although its performance
is very poor (selecting a random position for
the target is not a terribly sophisticated way
of finding its actual position), it is used for
comparison purposes: if under certain
conditions an algorithm behaves worse than
this one, it is not worth implementing it.

• The LSQ algorithm [14]: the relationship
between the coordinates of the nodes and the
distances among them is non-linear, due to
the presence of square roots and some
powers. However, for N nodes, a set of N-1
equations may be obtained, where all the
unknown variables (i.e. the position of the
target) are related using linear equations. In
this case, the system may be solved using a
Least Squares algorithm. This algorithm
requires a low computational cost, and
behaves quite well when the number of

beacons is greater than the minimum needed
(in a three-dimensional space, 4), but
presents a low accuracy when the number of
beacons is close to the minimum and the
distance estimation error is high.

• The Malguki algorithm [15]: this is a more
complex location algorithm, which requires a
higher computational cost that the previous
ones but it offers better accuracies for low
number of beacons and high distance
estimation errors.

 Fig. 3 shows the results of the simulation of the
three test algorithms. The side of the scenario cube is
10 m long, which means that the expected distance
between two nodes is about 6.6 m. There are four
beacons and the distance estimation error has been
varied from 0 m to 10 m. Taking into account the
expected distances, the relative error may be as big as
50%. At this point, we can observe the foreseen
behavior for every algorithm: the horizontal curve
about 6 m is the expected accuracy for the random
algorithm. As this algorithm does not use the
distances to compute the location estimation, its
accuracy does not depend on the quality of the
measurements. On the other hand, the LSQ algorithm
gives accurate position estimations for low values of
the distance estimation error, but its performance is
quickly degraded as this error grows. However, the
Malguki algorithm degrades gracefully with distance
error, reaching the uncertainty level of the random
algorithm when the distance estimation error is about
4 m. From that point onwards, the contradictory
information puzzles the algorithm, which produces
less accurate estimations than choosing the position
randomly.

Fig. 3: Standard deviation of the error vector, as
distance estimation error grows for the three test
algorithms.

 Fig. 4 shows the evolution of the computational
cost of the same algorithms as the distance estimation
error grows. Due to the substantial difference among
the test algorithms, the computational cost is
represented as the average time to produce a position
estimation. Of course, this time varies with the
processing power of the computer running the
simulation, its load, the amount of memory it has, etc.
In this case, the Malguki algorithm, being far more
complex than the other two, needs more time to find a
solution – but, as we have just seen in the previous
graph, it is more accurate.

Fig. 4: Computational cost of the test algorithms as
the distance estimation error grows.

5 Conclusion
A simulation platform for location algorithms in
wireless sensor networks has been presented. This
platform provides a flexible and powerful method for
comparing different algorithms and their performance
in a number of situations: new algorithms may be
easily added, which enables its adaptability to future
needs, it allows different kinds of distance estimation
error distribution, which helps simulating a wide
range of distance estimation techniques, etc. The
simulation platform has been verified using three
different algorithms.
 This simulation platform may be used to find the
minimum number of beacons required to obtain a
certain location accuracy, to test new location
algorithms or to evaluate the computational cost of
these kinds of algorithms.

References:
[1] J. Li, J. Janotti, D. De Couto, D. Karger, R.

Morris, A Scalable Location Service for
Geographic Ad-Hoc Routing, Proceedings of the
6th ACM International Conference on Mobile

Computing and Networking (MobiCom), 2000,
pp. 120-130.

[2] Y. Ko, N. Vaidya, Location Aided Routing
(LAR) in Mobile Ad-Hoc Networks, Mobile
Computing and Networking, 1998, pp.66-75.

[3] B. Hoffmann-Wellenhof, H. Lichtenegger, J.
Collins, Global Positioning System: Theory and
Practice, Springer-Verlag, 1997.

[4] A. Nasipuri, K. Li, A Directionality based
Location Discovery Scheme for Wireless Sensor
Networks, First ACM International Workshop on
Wireless Sensor Networks and Applications
(WSNA), 2002.

[5] C. D. McGillem, T.S. Rappaport, A beacon
navigation method for autonomous vehicles. IEEE
Transactions on Vehicular Technology, Vol. 38,
No. 3, 1989, pp. 132–139.

[6] N. B. Priyantha, A. Chakraborty, H.
Balakrishnan, The Cricket Location-Support
System. Mobile Computing and Networking,
2000, pp. 32–43.

[7] A. Harter, A. Hopper, P. Steggles, A. Ward, P.
Webster, The Anatomy of a Context-Aware
Application. Mobile Computing and Networking,
1999, pp. 59–68.

[8] A. Ward, A. Jones, A. Hopper. A New Location
Technique for the Active Office, IEEE Personnal
Communications, Vol. 4, No 5, 1997, pp. 42–47.

[9] NOAA Satellites and Information. Argos data
collection system. http://noaasis.noaa.gov/ARGOS.

[10] J. Arias, J. Lázaro, A. Zuloaga, J. Jiménez.
Doppler Location Algorithm for Wireless Sensor
Networks. International Conference on Wireless
Networks (ICWN), 2004, pp. 509–514.

[11] Y. Gwon, R. Jain, T. Kawahara, Robust Indoor
Location Estimation of Stationary and Mobile
Users. IEEE InfoCOM, 2004.

[12] P. Bahl, V. N. Padmanabhan, RADAR: An In–
Building RF–Based User Location and Tracking
System. IEEE INFOCOM, 2000, pp. 775–784.

[13] R. Want, A. Hopper, V. Falcao, J. Gibbons. The
Active Badge Location System, ACM
Transactions on Information Systems, Vol. 10,
1992, pp. 91–102.

[14] L. Doherty, K. S. J. Pister, L. El Ghaoui,
Convex Position Estimation in Wireless Sensor
Networks, International Conference of the IEEE
Computer and Communications Societies
(INFOCOM), 2001, pp. 1655-1633.

 [15] J. Arias, A. Zuloaga, J. Lázaro, J. Andreu, A.
Astarloa, Malguki: an RSSI based ad hoc location
algorithm, Microprocessors and Microsystems,
No. 28, 2004, pp. 403–409.

