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Abstract: This paper presents a fast algorithm to find an optimal subset codebook from a super codebook in a 
way that the RMS error between the new codebook and the training set in vector quantization becomes 
minimum. To have a fast algorithm, a genetic based algorithm is used that uses 2 evolutions, one in designing 
the whole sub-codebook and the other in finding each individual codeword of the sub-codebook. This optimal 
codebook can be efficiently used in the real time compression of the images with PSNR improvement of about 
1.1 – 8.2db in blocks of the image. 
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1 Introduction 

1.1   Vector Quantization 
Vector quantization (VQ) is a generalization of scalar 
quantization [1]. VQ divides the whole vector space 
into a limited number of vectors called codewords, 
and then quantizes each vector in the source with the 
closest codeword in the codebook and sends the index 
of the codeword in the codebook instead of the vector. 
It can achieve high compression rate with high quality 
if the codebook matches the source i.e. the error of 
quantization is minimal. It's obvious that every source 
has its own statistical parameters in the vectors that it 
produces. As a result for each different source, a 
different codebook should be used and the codebooks 
should be designed according to each specific source. 
Common codebook design algorithms use a number 
of sample vectors (training set) from the source to 
design a codebook that consists of a specific number 
of codewords. Unfortunately, there is no practical 
algorithm that leads to the optimal codebook for a 
given training sequence [1].  
Current algorithms use the whole vector space as the 
source for choosing the codewords. By searching 
vectors close to the training sets, they finally find a 
sub-optimal codebook, such as Generalized Max-
Lloyd Algorithm (GLA) [1], Linde-Buzo-Gray (LBG) 
[2], Pairwise Nearest Neighbor (PNN) [1], [3] and 
other methods. This way of searching involves lots of 
computation and a high complexity so that they are 
inefficient to design a new codebook for every new 
source. So they have to use one codebook in different 
sources which results in less performance. 

As mentioned, VQ can be used in many different 
fields to compress the source data very effectively [4], 
[5], such as speech [6] and image [7]. However this 
paper focuses on the use of VQ in image compression 
and design of image codebooks. But it can be 
implemented in other fields with slight modification. 
In image compression, the image is divided into 
blocks of a specific size and each block is treated as a 
vector. For example, the image is divided into 4*4 
blocks, i.e. the vector size is 16. Then by using a 
codebook of 256 codewords and finding the matching 
codeword from the codebook, the index of the 
codeword in the codebook is sent instead of the whole 
block. This results in image compression by a factor 
of 16 in 8 bit per pixel images. The decoder only 
should do a simple table lookup to replace the index 
with the codeword and reconstruct the image. 

1.2 Genetic Algorithm 
Nowadays, genetic algorithms (GA) [8], [9] and other 
evolutionary algorithms are widely used in finding 
solutions to different kinds of problems [10]. These 
evolutionary algorithms begin with a set of solutions 
to the problem which is called Initial Population. Then 
they try to make an improved population of new 
solutions by combining (Crossover) and modifying 
(Mutation) the solutions in the current population. 
Combining and modifying the solutions in each 
population are carried out in a way that is hoped to 
make a better solution. After sufficient number of 
iterations, if the algorithm is devised correctly, it will 
converge to a good solution which may be the optimal 
solution. The probability of finding the optimal 
solution or even a sub-optimal solution and the speed 



of convergence, is directly related to Crossover, 
Mutation, and the other parameters of the algorithm. 
Although these algorithms are popular, they are slow 
algorithms, because of the high number of iterations 
that are used in genetic algorithms or the other similar 
searching algorithms. As a result when high speed is 
needed they cannot be used efficiently. Doing 
accurate analysis of the algorithm according to the 
problem and using some preprocessing, some 
adjustments can be found that improve the 
performance so much that it can be even used in real 
time computations. 

1.3   New Approach in Codebook Design 
In this paper, the problem of designing codebooks in a 
limited time and limited calculations is solved by 
using a preprocessing: designing a Super Codebook. 
A super codebook is a very large codebook that 
consists of many codewords so that it can be used in 
many different sources. Then this super codebook is 
used in designing other codebooks in a way that they 
will be subsets of the super codebook. In this study, a 
super codebook of 8192 codewords by using GLA 
method is designed and the vector size is 16 i.e. image 
block size is 4*4. A very large training set of more 
than one million vectors is used to guarantee a 
sufficient statistical dependence of the super codebook 
from the training set. As mentioned, to design a 
codebook for a new source, the vector space of this 
super codebook is used instead of the whole vector 
space. Genetic algorithms can help finding a 
codebook subset of the super codebook that is optimal 
with respect to the new source. As shown in previous 
works, having a super codebook and using its subsets 
for each part of the image can result in a higher 
performance [7]. In Finite State Vector Quantization 
algorithms static subset codebooks are designed by 
using complex and slow algorithms and used in the 
quantization process [11]. Because these subsets are 
static, they are not optimal for every new source, so 
new subsets should be designed for each new source 
using a fast algorithm. In Adaptive Vector 
Quantization algorithms the sub-codebooks change 
through the quantization process according to some 
statistical parameters of the source [7]. But they have 
usually used a very simple analysis of the statistical 
parameters to have a fast algorithm. So the sub-
codebooks can still be improved by more heuristic 
methods that are used in the proposed algorithm. As a 
result, one of the fields that the proposed algorithm 
can be used is when there is a source that has a high 
number of vectors. Using this algorithm and changing 
the sub-codebooks dynamically over the quantization 
process can result in a high performance gain. This 
paper mainly discusses the designing of a subset 

codebook according to each region of an image and 
proves its quality which will be more than the 
ordinary codebooks of the same size. Because of the 
detailed explanation of the algorithm, its further 
application in image compression and other different 
fields will be covered in future works. 
 
2   GSCD Algorithm 

2.1   Overview 
In this section the proposed Genetic Sub-Codebook 
Design algorithm (GSCD) is discussed in detail. The 
flow chart of the algorithm is presented in Fig. 4. 
Different parts of the algorithm are described in the 
following subsections. 

2.2   Algorithm Inputs 
The inputs of the algorithm are a training set, a super 
codebook and a neighborhood list for each codeword 
in the super codebook. The neighborhood lists are 
previously built by another program that calculates the 
RMS distance between each pair of the codewords in 
the super codebook. Then it stores the closest 
neighbors of each codeword in a sorted list. In this 
study, the neighborhood list is limited to the size of 
about one hundredth of the super codebook size. The 
super codebook size is 8192 and 80 closest codewords 
are used as the neighborhood list of each codeword. 

2.3   Solution Representation 
The solutions of this algorithm are subsets of the 
super codebook. So any solution can be represented 
by a list that shows the indices of the codewords of 
the super codebook that are used in the subset. 
In every population, stronger individuals live longer. 
This is a basic principle in evolutionary algorithms 
that is called Elitism [12]. The GSCD uses this 
principle: The top solutions of each population are 
directly passed to the next population. As a result they 
act as the leader of the population to the optimal 
solution. 
The population size and the top solutions size, play an 
important role in converging the algorithm and the 
computational complexity. If a small population size 
is chosen, there is a risk of under-covering the 
solution space, while large population size needs more 
computation [13], [14]. After some experiments, the 
population size was chosen three times the sub-
codebook size. The top solutions that go directly to 
the next population are one tenth of the whole 
population. For example, if the sub-codebook size is 
32, then the population size is 96 (~100) and the top 
solutions are ten. 



2.4   Main Fitness Function 
The Main Fitness Function in this algorithm is the 
objective function which maximizes the Peak Signal 
to Noise Ratio (PSNR) of the sub-codebook with 
respect to the training sequence. To calculate this 
function, the closest codeword in the sub-codebook is 
found for each of the training set vectors. The search 
for the closest codeword is constrained using the 
annulus constrained method that uses substantially 
less computation than the full search method with no 
loss of accuracy. The RMS error of this codeword to 
the training sequence vector is calculated.  This 
procedure is repeated for all of the training sequence 
vectors. The average of the RMS errors of all vectors 
and then the PSNR function is calculated. The 
frequency of usage (rate of occurrence) for each 
codeword in the training sequence is kept for further 
analysis. 

2.5   Initial Population 
Initial population plays an important role in every 
genetic algorithm. If more time is spent on making a 
good Initial population, it will help the algorithm 
converge faster. In several methods, some solutions 
that are calculated with different approaches were 
used as the starting point for the algorithm, and GA is 
used to improve those solutions [15], [16]. But there is 
a risk of loss of diversity in the initial population and 
the problem of being caught in the local optimal 
solutions. Experimental results show that a completely 
random initial population would result in a faster 
convergence, i.e. all the 100 initial sub-codebooks are 
chosen randomly from the super codebook. 

2.6   Parent Selection 
As mentioned above, there are 100 solutions in each 
population, ten of them are directly transferred to the 
next population and the remaining 90 solutions are 
made by combining current solutions. For combining 
the solutions, two solutions are selected as the parents 
and then combined together (Crossover) to make two 
children out of them. Since every solution is not 
suitable to be a parent for the next population, a good 
strategy should be implemented in selecting the good 
parents so that they result in good children in the next 
population. One of the parent selection strategies is 
Roulette Wheel Selection [9]. In this approach, the 
probability of a solution to be selected as a parent is 
directly proportional to the Fitness function in a way 
that good solutions have higher chance of being 
selected as parents. So 45 pairs of parents are chosen 
by using the Roulette Wheel selection algorithm and 
combined to make the next population. 

2.7   Crossover 
After selecting parents, a method is implemented to 
combine (Crossover) them and make two children out 
of them. The combination method is dependent on the 
problem and the constraints of the problem should be 
considered in combining the parents, so they result in 
good children. In this algorithm, two subsets of a large 
set are combined to form two other subsets. The way 
these 2 subsets are combined is a new heuristic 
method that will be discussed in the following 
subsections. 

2.7.1   Secondary Population 
There is one primary population of sub-codebooks 
that evolves through the iterations of the algorithm 
and converges to the optimal solution. A secondary 
population is introduced here, the codewords of the 
super codebook. This secondary population evolves 
through the iterations of the algorithm and refines 
itself by putting the most useful codewords in higher 
ranks and deleting worst codewords from the 
population (Locking a Codeword). 

2.7.2   Secondary Fitness Function 
A secondary fitness function for the secondary 
population is defined here. If each codeword of the 
super codebook is analyzed individually, it is found 
that each codeword plays a role in increasing the main 
fitness function (PSNR). The effect of a codeword on 
the PSNR is proportional to its frequency of usage in 
the training sequence. A codeword that is used more 
often in quantizing is better than a codeword that is 
used less often. As a result, the secondary fitness 
function is defined to be the frequency of codeword 
usage which is calculated at the end of section 2.4. 
This secondary fitness function is used for selecting 
the codewords from the parents to make children. 

2.7.3   Locking a Codeword 
After calculating the secondary fitness function 
(PSNR), another procedure is implemented called 
locking a codeword. The codeword frequency for each 
of the codewords in the sub-codebook is analyzed. If 
it is lower than a predefined threshold, that codeword 
in the super codebook is locked and can not be used 
anymore in any solution for a predefined number of 
iterations. This procedure is the main part of the 
evolution of the secondary population, i.e. codewords 
of the super codebook. It helps the algorithm 
dramatically converge faster, by minimizing the 
number of useful codewords that the algorithm can 
choose from for making a sub-codebook. 



2.7.4   Codewords Selection 
Roulette Wheel is used again for selecting the 
codewords of the children sub-codebooks in the main 
part of the crossover algorithm. Codewords are 
selected from the two parents' codewords with a 
probability that is proportional to the secondary 
fitness function. Note that the locked codewords have 
the probability of zero until their lock period is passed 
and they become unlocked. So the above procedure is 
repeated until the two children grow to the size of a 
normal sub-codebook. But there might be a problem 
of choosing a codeword more than once in the 
children's subsets. Dealing with repeated codewords 
in a sub-codebook is discussed in the Repairing 
algorithm that follows the Mutation. 

2.8    Mutation 
Mutation is a key point in Genetic Algorithms that 
helps them get out from the local optimums [9]. As 
seen in the human being, the mutation is carried out 
naturally in each new generation so that the human 
being will adapt to the new situations. But some 
mutations may lead to a worse solution. This solution 
will not succeed to the next generation that follows 
this generation, by the help of the Roulette Wheel 
selection (Section 2.6). If a solution has a low fitness 
function, it will not be selected by the Roulette Wheel 
algorithm because the probability of the selection is 
proportional to the fitness function. 
This idea is implemented in the algorithm in a way 
that each codeword in a sub-codebook has a very little 
chance of mutation. If the mutation happens, the 
codeword will change to one of its neighborhood 
codewords that are in the pre-calculated neighborhood 
list. The mutation rate should not be high to harm the 
evolution process. According to the experiments on 
this algorithm, the size of the mutation neighborhood 
is limited to the first ten closest codewords, i.e. the 
first ten codewords in the pre-calculated neighborhood 
list. 

2.9    Repairing Unfeasible Solutions 
The last part of the algorithm which is significantly 
efficient in the convergence of the algorithm repairs 
the solutions that are not feasible. An unfeasible 
solution to the problem is a sub-codebook that 
contains a codeword more than once, which can occur 
in the crossover or mutation algorithms. The first 
occurrence of any codeword is kept in the sub-
codebook and duplicated codewords are changed to 
new codewords that are not in the sub-codebook. 
When a repeated codeword is found, it is changed to 
one of its neighborhood codewords and if all of the 
neighborhood codewords are in the sub-codebook, the 
neighborhoods of its neighborhood vectors are 

searched and so on, until a codeword that is not in the 
sub-codebook is found. Studies show to search the 
neighborhood list of a codeword, it's better to search it 
randomly and not to start from the first codeword to 
the last codeword in the list (the list is sorted from the 
closest neighbors to the farther neighbors). In the 
study, the size of neighborhood list for the repairing 
algorithm is the whole precalculated neighborhood list 
of the vectors. 

2.10    Stopping Condition 
Stopping condition depends on the time allocated to 
the algorithm to search for the solutions. It can stop 
after the difference between the old population and the 
new population is smaller than a given threshold. 
However Evolutionary algorithms may not improve 
solutions for some iterations, but suddenly they 
improve the solutions. So it's better to consider the 
behavior of the algorithm for a number of iterations, 
and if it can't improve the solutions after a predefined 
number of iterations, the algorithm is stopped. It can 
also stop after a constant number of iterations. After 
some experiments and analyzing the convergence of 
the algorithm, the number of evolutions is limited to 
15 iterations. Because the algorithm almost converges 
in 15 iterations and more iterations won't yield any 
significant improvement. 
 
3   Experimental Results 
To show the efficiency of the GSCD algorithm, the 
Lena image with 512*512 pixels (16384 vectors) is 
divided into 64 blocks of 64*64 pixels (each block has 
256 vectors). Then the best sub-codebook with 16 
vectors of the super codebook for each block of the 
image is found by using each block as the training set 
for the GSCD algorithm. So there are 64 blocks of the 
image with 64 sub-codebooks, one sub-codebook for 
each block. Then each block is encoded with three 
different codebooks and the PSNR is calculated. The 
first codebook is the super codebook with 8192 
vectors. The second codebook (small codebook) has 
16 vectors designed by using GLA algorithm from the 
same training sequence that the super codebook is 
designed from. The third codebook is the sub-
codebook generated by using GSCD and has 16 
vectors. The bitrate for each of these three methods is 
calculated (Table 1). For GSCD, all sub-codebooks 
should be sent to the decoder so it can decode the 
image. So it yields more bitrate than the usual 16 
vector codebooks. In this study all indexes of the sub-
codebooks from the super codebook are sent to the 
decoder which results in 0.8 more bits for each block 
of the images. To decrease the overhead of sending 
these sub-codebooks to the decoder some methods can 



be implemented. For example the difference of each 
sub-codebook with respect to the previous sub-
codebook can be sent or even some heuristic methods 
can be used. 
As you see in Fig. 5, in those blocks of the image with 
less detail, PSNR has a higher improvement up to 
8.2db and in detailed blocks, the improvement is low. 
The size of the sub-codebooks can be changed 
dynamically along the image i.e. larger sub-codebooks 
are used in those blocks with more details and smaller 
ones in less details so it yields higher PSNR in almost 
the same bitrate. Some problems such as sizing each 
block of the image, and the sub-codebook for each 
block and transmitting sub-codebooks to the decoder 
efficiently are not discussed here and will have their 
detailed implementation in our future works. 
 
4   Conclusion 
Using this fast algorithm that converges in limited 
number of iterations, the vector space of a super 
codebook is searched thoroughly to design a sub-
codebook. As GSCD suggests, it's better to use a 
small sub-codebook for small blocks of data instead of 
using a large static codebook for all vectors of the 
source. By dynamically changing the block size, the 
sub-codebook size and even some parameters in the 
algorithm, high improvement can be reached with 
acceptable complexity. As it is dependent from the 
nature of the source, GSCD can be used in different 
areas that vector quantization is used such as speech, 
image and video compression. Implementation of a 
practical encoder and it's dynamically changing 
behavior will be discussed in our future works. 
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Table 1  PSNR and Bitrate/Vector for three methods. 
Vector size is 4*4 = 16 pixels 

 Super CB Small CB GSCD 
PSNR (db) 33.70 26.06 28.20 

Bitrate/Vector 13 4 4.8125 
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Fig. 4. The flow chart of the GSCD 
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