
A Fast Evolutionary Algorithm in Codebook Design
ABDOLALI MOMENAI, SIAMAK TALEBI

Electrical Engineering Department
 Shahid Bahonar University of Kerman

Kerman
IRAN

Abstract: This paper presents a fast algorithm to find an optimal subset codebook from a super codebook in a
way that the RMS error between the new codebook and the training set in vector quantization becomes
minimum. To have a fast algorithm, a genetic based algorithm is used that uses 2 evolutions, one in designing
the whole sub-codebook and the other in finding each individual codeword of the sub-codebook. This optimal
codebook can be efficiently used in the real time compression of the images with PSNR improvement of about
1.1 – 8.2db in blocks of the image.

Key-Words: Vector Quantization, Image Compression, Adaptive VQ, Codebook Design, Genetic Algorithm

1 Introduction

1.1 Vector Quantization
Vector quantization (VQ) is a generalization of scalar
quantization [1]. VQ divides the whole vector space
into a limited number of vectors called codewords,
and then quantizes each vector in the source with the
closest codeword in the codebook and sends the index
of the codeword in the codebook instead of the vector.
It can achieve high compression rate with high quality
if the codebook matches the source i.e. the error of
quantization is minimal. It's obvious that every source
has its own statistical parameters in the vectors that it
produces. As a result for each different source, a
different codebook should be used and the codebooks
should be designed according to each specific source.
Common codebook design algorithms use a number
of sample vectors (training set) from the source to
design a codebook that consists of a specific number
of codewords. Unfortunately, there is no practical
algorithm that leads to the optimal codebook for a
given training sequence [1].
Current algorithms use the whole vector space as the
source for choosing the codewords. By searching
vectors close to the training sets, they finally find a
sub-optimal codebook, such as Generalized Max-
Lloyd Algorithm (GLA) [1], Linde-Buzo-Gray (LBG)
[2], Pairwise Nearest Neighbor (PNN) [1], [3] and
other methods. This way of searching involves lots of
computation and a high complexity so that they are
inefficient to design a new codebook for every new
source. So they have to use one codebook in different
sources which results in less performance.

As mentioned, VQ can be used in many different
fields to compress the source data very effectively [4],
[5], such as speech [6] and image [7]. However this
paper focuses on the use of VQ in image compression
and design of image codebooks. But it can be
implemented in other fields with slight modification.
In image compression, the image is divided into
blocks of a specific size and each block is treated as a
vector. For example, the image is divided into 4*4
blocks, i.e. the vector size is 16. Then by using a
codebook of 256 codewords and finding the matching
codeword from the codebook, the index of the
codeword in the codebook is sent instead of the whole
block. This results in image compression by a factor
of 16 in 8 bit per pixel images. The decoder only
should do a simple table lookup to replace the index
with the codeword and reconstruct the image.

1.2 Genetic Algorithm
Nowadays, genetic algorithms (GA) [8], [9] and other
evolutionary algorithms are widely used in finding
solutions to different kinds of problems [10]. These
evolutionary algorithms begin with a set of solutions
to the problem which is called Initial Population. Then
they try to make an improved population of new
solutions by combining (Crossover) and modifying
(Mutation) the solutions in the current population.
Combining and modifying the solutions in each
population are carried out in a way that is hoped to
make a better solution. After sufficient number of
iterations, if the algorithm is devised correctly, it will
converge to a good solution which may be the optimal
solution. The probability of finding the optimal
solution or even a sub-optimal solution and the speed

of convergence, is directly related to Crossover,
Mutation, and the other parameters of the algorithm.
Although these algorithms are popular, they are slow
algorithms, because of the high number of iterations
that are used in genetic algorithms or the other similar
searching algorithms. As a result when high speed is
needed they cannot be used efficiently. Doing
accurate analysis of the algorithm according to the
problem and using some preprocessing, some
adjustments can be found that improve the
performance so much that it can be even used in real
time computations.

1.3 New Approach in Codebook Design
In this paper, the problem of designing codebooks in a
limited time and limited calculations is solved by
using a preprocessing: designing a Super Codebook.
A super codebook is a very large codebook that
consists of many codewords so that it can be used in
many different sources. Then this super codebook is
used in designing other codebooks in a way that they
will be subsets of the super codebook. In this study, a
super codebook of 8192 codewords by using GLA
method is designed and the vector size is 16 i.e. image
block size is 4*4. A very large training set of more
than one million vectors is used to guarantee a
sufficient statistical dependence of the super codebook
from the training set. As mentioned, to design a
codebook for a new source, the vector space of this
super codebook is used instead of the whole vector
space. Genetic algorithms can help finding a
codebook subset of the super codebook that is optimal
with respect to the new source. As shown in previous
works, having a super codebook and using its subsets
for each part of the image can result in a higher
performance [7]. In Finite State Vector Quantization
algorithms static subset codebooks are designed by
using complex and slow algorithms and used in the
quantization process [11]. Because these subsets are
static, they are not optimal for every new source, so
new subsets should be designed for each new source
using a fast algorithm. In Adaptive Vector
Quantization algorithms the sub-codebooks change
through the quantization process according to some
statistical parameters of the source [7]. But they have
usually used a very simple analysis of the statistical
parameters to have a fast algorithm. So the sub-
codebooks can still be improved by more heuristic
methods that are used in the proposed algorithm. As a
result, one of the fields that the proposed algorithm
can be used is when there is a source that has a high
number of vectors. Using this algorithm and changing
the sub-codebooks dynamically over the quantization
process can result in a high performance gain. This
paper mainly discusses the designing of a subset

codebook according to each region of an image and
proves its quality which will be more than the
ordinary codebooks of the same size. Because of the
detailed explanation of the algorithm, its further
application in image compression and other different
fields will be covered in future works.

2 GSCD Algorithm

2.1 Overview
In this section the proposed Genetic Sub-Codebook
Design algorithm (GSCD) is discussed in detail. The
flow chart of the algorithm is presented in Fig. 4.
Different parts of the algorithm are described in the
following subsections.

2.2 Algorithm Inputs
The inputs of the algorithm are a training set, a super
codebook and a neighborhood list for each codeword
in the super codebook. The neighborhood lists are
previously built by another program that calculates the
RMS distance between each pair of the codewords in
the super codebook. Then it stores the closest
neighbors of each codeword in a sorted list. In this
study, the neighborhood list is limited to the size of
about one hundredth of the super codebook size. The
super codebook size is 8192 and 80 closest codewords
are used as the neighborhood list of each codeword.

2.3 Solution Representation
The solutions of this algorithm are subsets of the
super codebook. So any solution can be represented
by a list that shows the indices of the codewords of
the super codebook that are used in the subset.
In every population, stronger individuals live longer.
This is a basic principle in evolutionary algorithms
that is called Elitism [12]. The GSCD uses this
principle: The top solutions of each population are
directly passed to the next population. As a result they
act as the leader of the population to the optimal
solution.
The population size and the top solutions size, play an
important role in converging the algorithm and the
computational complexity. If a small population size
is chosen, there is a risk of under-covering the
solution space, while large population size needs more
computation [13], [14]. After some experiments, the
population size was chosen three times the sub-
codebook size. The top solutions that go directly to
the next population are one tenth of the whole
population. For example, if the sub-codebook size is
32, then the population size is 96 (~100) and the top
solutions are ten.

2.4 Main Fitness Function
The Main Fitness Function in this algorithm is the
objective function which maximizes the Peak Signal
to Noise Ratio (PSNR) of the sub-codebook with
respect to the training sequence. To calculate this
function, the closest codeword in the sub-codebook is
found for each of the training set vectors. The search
for the closest codeword is constrained using the
annulus constrained method that uses substantially
less computation than the full search method with no
loss of accuracy. The RMS error of this codeword to
the training sequence vector is calculated. This
procedure is repeated for all of the training sequence
vectors. The average of the RMS errors of all vectors
and then the PSNR function is calculated. The
frequency of usage (rate of occurrence) for each
codeword in the training sequence is kept for further
analysis.

2.5 Initial Population
Initial population plays an important role in every
genetic algorithm. If more time is spent on making a
good Initial population, it will help the algorithm
converge faster. In several methods, some solutions
that are calculated with different approaches were
used as the starting point for the algorithm, and GA is
used to improve those solutions [15], [16]. But there is
a risk of loss of diversity in the initial population and
the problem of being caught in the local optimal
solutions. Experimental results show that a completely
random initial population would result in a faster
convergence, i.e. all the 100 initial sub-codebooks are
chosen randomly from the super codebook.

2.6 Parent Selection
As mentioned above, there are 100 solutions in each
population, ten of them are directly transferred to the
next population and the remaining 90 solutions are
made by combining current solutions. For combining
the solutions, two solutions are selected as the parents
and then combined together (Crossover) to make two
children out of them. Since every solution is not
suitable to be a parent for the next population, a good
strategy should be implemented in selecting the good
parents so that they result in good children in the next
population. One of the parent selection strategies is
Roulette Wheel Selection [9]. In this approach, the
probability of a solution to be selected as a parent is
directly proportional to the Fitness function in a way
that good solutions have higher chance of being
selected as parents. So 45 pairs of parents are chosen
by using the Roulette Wheel selection algorithm and
combined to make the next population.

2.7 Crossover
After selecting parents, a method is implemented to
combine (Crossover) them and make two children out
of them. The combination method is dependent on the
problem and the constraints of the problem should be
considered in combining the parents, so they result in
good children. In this algorithm, two subsets of a large
set are combined to form two other subsets. The way
these 2 subsets are combined is a new heuristic
method that will be discussed in the following
subsections.

2.7.1 Secondary Population
There is one primary population of sub-codebooks
that evolves through the iterations of the algorithm
and converges to the optimal solution. A secondary
population is introduced here, the codewords of the
super codebook. This secondary population evolves
through the iterations of the algorithm and refines
itself by putting the most useful codewords in higher
ranks and deleting worst codewords from the
population (Locking a Codeword).

2.7.2 Secondary Fitness Function
A secondary fitness function for the secondary
population is defined here. If each codeword of the
super codebook is analyzed individually, it is found
that each codeword plays a role in increasing the main
fitness function (PSNR). The effect of a codeword on
the PSNR is proportional to its frequency of usage in
the training sequence. A codeword that is used more
often in quantizing is better than a codeword that is
used less often. As a result, the secondary fitness
function is defined to be the frequency of codeword
usage which is calculated at the end of section 2.4.
This secondary fitness function is used for selecting
the codewords from the parents to make children.

2.7.3 Locking a Codeword
After calculating the secondary fitness function
(PSNR), another procedure is implemented called
locking a codeword. The codeword frequency for each
of the codewords in the sub-codebook is analyzed. If
it is lower than a predefined threshold, that codeword
in the super codebook is locked and can not be used
anymore in any solution for a predefined number of
iterations. This procedure is the main part of the
evolution of the secondary population, i.e. codewords
of the super codebook. It helps the algorithm
dramatically converge faster, by minimizing the
number of useful codewords that the algorithm can
choose from for making a sub-codebook.

2.7.4 Codewords Selection
Roulette Wheel is used again for selecting the
codewords of the children sub-codebooks in the main
part of the crossover algorithm. Codewords are
selected from the two parents' codewords with a
probability that is proportional to the secondary
fitness function. Note that the locked codewords have
the probability of zero until their lock period is passed
and they become unlocked. So the above procedure is
repeated until the two children grow to the size of a
normal sub-codebook. But there might be a problem
of choosing a codeword more than once in the
children's subsets. Dealing with repeated codewords
in a sub-codebook is discussed in the Repairing
algorithm that follows the Mutation.

2.8 Mutation
Mutation is a key point in Genetic Algorithms that
helps them get out from the local optimums [9]. As
seen in the human being, the mutation is carried out
naturally in each new generation so that the human
being will adapt to the new situations. But some
mutations may lead to a worse solution. This solution
will not succeed to the next generation that follows
this generation, by the help of the Roulette Wheel
selection (Section 2.6). If a solution has a low fitness
function, it will not be selected by the Roulette Wheel
algorithm because the probability of the selection is
proportional to the fitness function.
This idea is implemented in the algorithm in a way
that each codeword in a sub-codebook has a very little
chance of mutation. If the mutation happens, the
codeword will change to one of its neighborhood
codewords that are in the pre-calculated neighborhood
list. The mutation rate should not be high to harm the
evolution process. According to the experiments on
this algorithm, the size of the mutation neighborhood
is limited to the first ten closest codewords, i.e. the
first ten codewords in the pre-calculated neighborhood
list.

2.9 Repairing Unfeasible Solutions
The last part of the algorithm which is significantly
efficient in the convergence of the algorithm repairs
the solutions that are not feasible. An unfeasible
solution to the problem is a sub-codebook that
contains a codeword more than once, which can occur
in the crossover or mutation algorithms. The first
occurrence of any codeword is kept in the sub-
codebook and duplicated codewords are changed to
new codewords that are not in the sub-codebook.
When a repeated codeword is found, it is changed to
one of its neighborhood codewords and if all of the
neighborhood codewords are in the sub-codebook, the
neighborhoods of its neighborhood vectors are

searched and so on, until a codeword that is not in the
sub-codebook is found. Studies show to search the
neighborhood list of a codeword, it's better to search it
randomly and not to start from the first codeword to
the last codeword in the list (the list is sorted from the
closest neighbors to the farther neighbors). In the
study, the size of neighborhood list for the repairing
algorithm is the whole precalculated neighborhood list
of the vectors.

2.10 Stopping Condition
Stopping condition depends on the time allocated to
the algorithm to search for the solutions. It can stop
after the difference between the old population and the
new population is smaller than a given threshold.
However Evolutionary algorithms may not improve
solutions for some iterations, but suddenly they
improve the solutions. So it's better to consider the
behavior of the algorithm for a number of iterations,
and if it can't improve the solutions after a predefined
number of iterations, the algorithm is stopped. It can
also stop after a constant number of iterations. After
some experiments and analyzing the convergence of
the algorithm, the number of evolutions is limited to
15 iterations. Because the algorithm almost converges
in 15 iterations and more iterations won't yield any
significant improvement.

3 Experimental Results
To show the efficiency of the GSCD algorithm, the
Lena image with 512*512 pixels (16384 vectors) is
divided into 64 blocks of 64*64 pixels (each block has
256 vectors). Then the best sub-codebook with 16
vectors of the super codebook for each block of the
image is found by using each block as the training set
for the GSCD algorithm. So there are 64 blocks of the
image with 64 sub-codebooks, one sub-codebook for
each block. Then each block is encoded with three
different codebooks and the PSNR is calculated. The
first codebook is the super codebook with 8192
vectors. The second codebook (small codebook) has
16 vectors designed by using GLA algorithm from the
same training sequence that the super codebook is
designed from. The third codebook is the sub-
codebook generated by using GSCD and has 16
vectors. The bitrate for each of these three methods is
calculated (Table 1). For GSCD, all sub-codebooks
should be sent to the decoder so it can decode the
image. So it yields more bitrate than the usual 16
vector codebooks. In this study all indexes of the sub-
codebooks from the super codebook are sent to the
decoder which results in 0.8 more bits for each block
of the images. To decrease the overhead of sending
these sub-codebooks to the decoder some methods can

be implemented. For example the difference of each
sub-codebook with respect to the previous sub-
codebook can be sent or even some heuristic methods
can be used.
As you see in Fig. 5, in those blocks of the image with
less detail, PSNR has a higher improvement up to
8.2db and in detailed blocks, the improvement is low.
The size of the sub-codebooks can be changed
dynamically along the image i.e. larger sub-codebooks
are used in those blocks with more details and smaller
ones in less details so it yields higher PSNR in almost
the same bitrate. Some problems such as sizing each
block of the image, and the sub-codebook for each
block and transmitting sub-codebooks to the decoder
efficiently are not discussed here and will have their
detailed implementation in our future works.

4 Conclusion
Using this fast algorithm that converges in limited
number of iterations, the vector space of a super
codebook is searched thoroughly to design a sub-
codebook. As GSCD suggests, it's better to use a
small sub-codebook for small blocks of data instead of
using a large static codebook for all vectors of the
source. By dynamically changing the block size, the
sub-codebook size and even some parameters in the
algorithm, high improvement can be reached with
acceptable complexity. As it is dependent from the
nature of the source, GSCD can be used in different
areas that vector quantization is used such as speech,
image and video compression. Implementation of a
practical encoder and it's dynamically changing
behavior will be discussed in our future works.

References:
[1] A. Gersho, R. Gray. “Vector Quantization and
Signal Compression”, Kluwer Academic Publishers,
(1992)
[2] Y. Linde, A. Buzo, R. M. Gray. “An Algorithm for
Vector Quantizer Design”, IEEE Trans. Commun.,
Vol. COM-28, pp. 84-95, January (1980)
[3] W.H. Equitz. “Fast Algorithms for Vector
Quantization Picture Coding”, Master's thesis, M.I.T.,
Cambridge, June (1984)
[4] R. M. Gray. “Vector Quantization”, IEEE ASSP
Magazine, pp. 4-29, April (1984)
[5] A. Gersho. “On the Structure of Vector
Quantizers”, IEEE Trans. Inform. Theory, Vol. IT-28,
pp. 4-29, March (1982)
[6] J. Makhoul, S. Roucos, H. Gish. “Vector
Quantization in Speech Coding”, Proc. IEEE, vol. 73,
pp. 1551-1588, November (1985)

[7] N. M. Nasrabadi, R. A. King. “Image Coding
Using Vector Quantization, A review”, IEEE Trans.
Commun., Vol. 36, pp. 957-971, August (1988)
[8] J. H. Holland. “Adaptation in Natural and
Artificial Systems”, University of Michigan Press,
(1975)
[9] D. E. Goldberg. “Genetic Agorithms in Search,
Optimization, and Machine Learning”, Addison-
Wesly, (1989)
[10] C.R. Reeves. “Modern Heuristic Techniques for
Combinatorial Problems”, McGraw-Hill, (1995)
[11] R. F. Chang, W. T. Chen. “Image Coding Using
Variable-Rate Side-Match Finite-State Vector
Quantization”, IEEE Trans. Image Processing, Vol. 2,
No. 1, pp. 104-108, January (1993)
[12] K. A. De Jong. “An Analysis of the Behavior of a
Class of Genetic Adaptive Systems”, Doctoral
Dissertation, University of Michigan, (1975)
[13] D. E. Goldberg. “Sizing Populations for Serial
and Parallel Genetic Algorithms”, Proceedings of 3rd
International Conference on Genetic Algorithms,
(1989)
[14] J. T. Alander. “Optimal Population Size of
Genetic Algorithms”, Proc. CompEuro 92, IEEE
Computer Society Press, pp. 65-70, (1992)
[15] C. R. Reeves. “A Genetic Algorithm for
Flowshop Sequencing. Computers”, Ops. Res, (1992)
[16] A. Kapsalis, G. D. Smith, V. J. Rayward-Smith.
“Solving the Graphical Steiner Sree Problem Using
Genetic Algorithms”, JORS, (1993)

Table 1 PSNR and Bitrate/Vector for three methods.
Vector size is 4*4 = 16 pixels

 Super CB Small CB GSCD
PSNR (db) 33.70 26.06 28.20

Bitrate/Vector 13 4 4.8125

Fi Fi Fi

Read Super Codebook
and Neighbor List

Generate Random Initial
Population

Fitness Evaluation for Initial
Population Start

Start of
Evolution Cycle

Copy Best of Old
Population Directly to
the New Population

Parent Selection by Using
Roulette Wheel Algorithm Parent Crossover to

Form Childs

Mutation Repair Unfeasible Sub-
Codebooks

Fitness EvaluationEnd of Evolution
Cycle

Calculate Main Fitness
Function

Lock Low-Used
Codewords

Sort Population

Start of Fitness
Evaluation

End of Fitness
Evaluation

Calculate Secondary Fitness
Function

Print Index of Codewords of
 Best Sub-Codebook End Evolution Cycle Stop

Evolution?

Yes

No

Fig. 4. The flow chart of the GSCD

20

25

30

35

40

45

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63
Block Number

PSNR (db)

Super Codebook
GSCD
Small Codebook
Fig. 5. Performance Comparison
g. 1. GSCD
 g. 3. Super Codebook
g. 2. Small Codebook

