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Abstract: - Originated from human immune system, artificial immune system has been widely applied in the 
computational fields, especially for the task of anomaly detection. Although intensively investigated in the 
literature, most of the artificial immune systems involve the process of model pre-definition according to the 
specific scenarios to be coped with. The pre-definition, however, could cause the system to be unreliable and 
inflexible. Instead, we propose in this paper an integrated artificial immune system platform, which can 
automatically adapt to various types of immune models. For a particular object to be detected, the platform is 
able to configure the model set dynamically based on the "pressure" produced during the course of training and 
testing. In addition, a hybrid evaluation of multi-AIS-models is employed in the integrated platform to improve 
the self-adaptability of the system. 
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1 Introduction 
Inspired by the mechanism of human immune system 
(HIS), researchers in the field of computer science 
have successfully introduced artificial immune 
systems (AIS) for solving computational tasks. 
Amongst them, anomaly detection, due to its wide 
range of applications such as cancer diagnose, virus 
detection, mortgage deceit, and fault diagnose, has 
received increasing attentions [1]. By far, most of the 
AIS based anomaly detection systems are designed 
for detecting certain object or its subset using 
pre-tuned AIS models, causing a large number of 
variants of the general immune models. 

S. Forrest proposed an AIS model based on the 
binary string expression, r-contiguous matching and 
negative selection algorithm (NSA) [2]. This model 
functions well while it is used to analyse sequences 
of process calls in UNIX system and a small subset 
of the network traffic data. J. Kim pointed out that 
NSA could cause serious scaling problem in face of 
tremendous network traffic data, while r-contiguous 

matching, as a continuous matching function, is 
inappropriate for network traffic data with discrete 
feature intervals [3]. Therefore, she proposed an 
immune model based on feature interval expression 
and IF-THEN rule matching and extended the 
colonel selection algorithm (CSA) to analyse 
network traffic data with multi-dimensional features. 
To further enlarge the scope of intrusion detection, F. 
González brought forward a hyper-rectangle 
expression and rules based NSA [4]. Nevertheless, 
the enhancements so far are still limited to cope with 
a small dynamic range of the traffic data, such that 
only a small subset of the problem space can be well 
handled. 
 Currently, the choice of AIS model, including 
model expression, matching, training, evaluation and 
neutralization, is mainly pre-defined by experts 
based on the hypothesized problem space and their 
own experiences. The model is then iteratively 
adjusted based on newly observed experimental 
results that could be biased from the original model. 
Two disadvantages exist here: (1) the limited 



experiences of experts could be unreliable for 
detecting objects varying in such a dynamic way; (2) 
the comparison between different models and 
algorithms is hard due to different conditions and 
parameter settings and thus cannot provides much 
useful information. In this paper we propose an 
Integrated Platform of Artificial Immune Systems 
(IPAisys) to address this issue. In this platform, 
various model prototypes are integrated into a 
unified framework and optimal model setting can be 
achieved through a dynamic configuration scheme. 
In particular, experimental data and their 
intermediate states generated in the course of training 
and testing will be utilized to regularize and combine 
these isolated immune models into a hybrid one. By 
saying hybrid, we have two implications: the optimal 
regularization of each single model, and the 
comprehensive evaluation using multi-AIS-models.  

Note that in this paper we do not attempt to 
manifest all the models used but concentrate on 
explaining the approaches to the optimal 
configuration of AIS models. 
 
 

2 Related work 
Applying AIS to anomaly detection has been a hot 
research topic in the past decade, as evidenced by 
large amount of work published in the literature. S. 
Forrest first proposed NSA, in analogy with T cells 
of HIS, to deal with various anomaly detection 
problems. This algorithm defines "Self" as the 
normal behavior patterns of a network monitoring 
system. Several random patterns are then produced 
as immature detectors to be tested by “Self”. An 
immature detector is abandoned in case it can be 
matched with one individual of "Self". When the 
network traffic data is complex, however, the scaling 
problem introduced by NSA cannot be neglected [5]. 
For this reason, J. Kim developed a semantic 
expression of detector, i.e. feature intervals, to 
extract network features for building the rules. 
Meanwhile, she replaced NSA by CSA to further 
alleviate the scaling problem. Several real-value 

based expressions were also discussed by F. 
González, including hyper-rectangle, fuzzy rules and 
hyper-sphere, and corresponding detector generation 
algorithms, resulting an expanded problem space. 
The idea behind is that AIS models should be 
redefined or iteratively refined with the changes of 
problem space, which can be described as a single 
model evaluation process as shown in Fig.1. 

 The significant diversities among problem 
spaces, and thus feature descriptions of objects to be 
detected, make AIS models greatly differ from each 
other in terms of expression, matching, training, 
evaluation and neutralization. To avoid 
time-consuming model validation, we propose in this 
paper a dynamic model configuration scheme, which 
can adjust AIS models by a set of training and testing 
measurements, such as fitness, false positive rate, 
false negative rate and so on, acting as a kind of 
"pressure". Different models with different detectors 
are then combined to evaluate the object.  
 
 

3 Construction of IPAisys 
In order to obtain a dynamic model configuration 
scheme and make use of multi-AIS-models to 
perform evaluation, an integrated platform of AIS 
need to be set up, namely IPAisys. In general, an 
IPAisys consists of two main modules, data 
preprocessing module and model configuration 
module, each with its own components. All 
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Fig.1. Single model evaluation mechanism 



components are integrated in a uniform framework, 
as illustrated in Fig.2, to tune the expression and 
algorithm of each model for compatible cooperation. 

 
3.1. Data preprocessing module 
In data preprocessing module, antigen data, e.g. TCP 
Dump data, are first collected by the data collector 
and transferred to the data processor, wherein the 
original data are coded for the purpose of 
compression/decompression or concatenation. 
Following the data processor comes the data 
formatter, which provides a data-uniform interface to 
the model configuration module. It translates coded 
date into XML format with the help of expert 
regulation files. In this way, an AIS model can be 

properly configured regardless the format of the 
original data. 

3.2. Model configuration module 

3.2.1. AIS model configuration component 
The model configuration component is responsible 
for providing an optimal configuration scheme to the 
cultivator component (see Sec. 3.2.2). We can first 
structure detector generation algorithm based AIS 
models like Fig.3, due to their common 
characteristics as described in [6][7][8][9][10]. 
 Note that the five units in the figure, i.e. 
expression unit (Ex), matching unit (Ma), training 
unit (Tr), evaluation unit (Ev) and neutralization unit 
(Ne), can sufficiently define an AIS model. For 
simplicity, we fix Tr unit and ignore the Ne unit at 
this stage and mainly focus on the effects of the other 
three units. Therefore, an AIS model is represented 
by a triple of units, i.e.  

( )EvMaExAisModel ,,= . 

 Each unit is assembled by several optional items, 
shown in Table 1. 

Unit name
Optional item 

one 

Optional item 

two 

Optional item 

three 

Expression 

Unit (Ex)

Binary String 

(BS) 

Digital 

Sequence (DS) 

Hyper-rectangle 

(HR) 

Matching 

Unit (Ma)

R-contiguous 

(RC) 
R-chunk (RK) 

Satisfy Rule 

(SR) 

Evaluation 

Unit (Ev)

Autarchy 

Evaluation 

(AE) 

Marker 

Evaluation 

(ME) 

 

Table 1. Partial optional items in units of AIS model 

Also note that the configuration of an AIS 
model should be constrained by the Ex-Ma 
relationship, preventing invalid AIS models from 
being assembled. Table 2 lists several typical 
relationships of dependency and restriction between 
Ex and Ma. 
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Unit 

name 

Unit 

name 

Type of 

relationship 
Relationship list 

Ex Ma Dependence 

BS+RC; DS+RC; 

BS+RK; DS+RK; 

HR+SR 

Ex Ma Restriction 
BS-SR; DS-SR; HR-RC; 

HR-RK; 

Table 2. Ex-Ma relationship of dependency and restriction 

While an AIS model set can be assembled 
according to Table 1 and Table 2, its parameters, 
such as the length of digital sequence, the value of r 
in r-contiguous matching, and the threshold of 
Hamming distance matching, should be set by 
experts according to the models chosen. Table 3 
shows an example of a randomly assembled AIS 
model set, where the numbers are the corresponding 
parameters advised by experts. 

AIS model set Ex Ma Ev 

M1 DS (6) RC (3) AE 

M2 BS (49) HM (27) ME 

M3 BS (49) RC (25) ME 

．．． ．．． ．．． ．．． 

Table 3. Example of AIS models randomly assembled 

In the integrated platform, AIS models 
iteratively transform according to a probability 
matrix, Pmatrix, defined as 
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Pmatrix can be viewed as the weights of different 
detector sets generated from AIS model set. The 

model transition probability )...1,...1( kjkipij ==  

is the chance for Mi to transform into Mj. We set 

 in 

initialization for considering that each model should 

be equally weighted without other prior knowledge. 
For illustration, an example is shown in Fig. 4 where 
the AIS model set M = {M1, M2, M3} contains 100 
detectors for each model at the beginning. With the 
change of Pmatrix, the number of detectors of M1, M2 
and M3 alters accordingly, to 100, 90, 80 and then 
100, 80, 60 as shown on the diagonal. 
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Fig.4. Pmatrix changes from initialization to other states 

The changes of Pmatrix,, as the core of the model's 
adaptability, are incurred by the "pressure" during 
training, that is, the average fitness of each detector 
set from AIS models after N generations of 
evolvement in the cultivator component. Let D = {D1, 
D2, D3…Dk} be the detector set produced by the AIS 
model set M = {M1, M2, M3…Mk}. After N 
generations of evolvement, the average fitness of Di 
(i=1, 2, 3…k), denoted by FDi, is calculated and 
Pmatrix changes based on the following rules:  

(1) )(' jiFFiffpPP DjDichangeijij ≠≤+= ; 
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where Pchange is a predefined offset constant (0.1 in 
Fig.4). 
 After T rounds of transformation, the average 
false positive rate (FP) of D = {D1, D2, D3…Dk}, 
FPavg, as well as the average false negative rate (FN) 



FNavg, will be measured in the hybrid evaluation 
component. If FPavg is higher than a threshold β and 
FNavg is higher than another threshold γ, M = {M1, 
M2, M3…Mk} will be re-initialized. Otherwise D = 
{D1, D2, D3…Dk} will be matured and put into real 
environment with hybrid evaluation function. 
 
3.2.2 Cultivator component 
The cultivator component is devised to train 
multi-AIS-models based detector set D = {D1, D2, 
D3…Dk} using Genetic Algorithm (GA) and return 
fitness values as the "pressure". We use the standard 
GA algorithm whose parameters are given in Sec. 4. 
 
3.2.3 Hybrid Evaluation Component 
The hybrid evaluation component then evaluates D = 
{D1, D2, D3…Dk} in terms of FPavg and FNavg using 
the hybrid evaluation function, the values of which 
decide whether an AIS model need to be 
re-initialized as described in Sec. 3.2.1. The hybrid 
evaluation function fhybrid (x) can be defined in two 
forms below: 

(1) ; )(......)()()( 21 xfxfxfxf DkDDhybrid ⊗⊗=

(2) ; ∑
=

=
k

i
Dihybrid xfxf

1
)()(

where fDi (x) (i=1,2…k) is the evaluation function of 
Detector set Di, depending on Evaluation Unit 
selected in the model configuration component. fDi 

(x)=1 (positive response) means that Di detects x as 
anomaly and fDi (x)=0  (negative response) on the 
contrary. 

Clearly, the two functions above represent two 
kinds of hybrid evaluation philosophies. For function 
(1), x is detected as anomaly if at least one detector 
set Dj (j [1…k]) gives positive response; and 
detected as normality only if all detector set D = {D1, 
D2, D3…Dk} are negative. This is the Autarchy 
Evaluation used in a hybrid fashion based on 
multi-AIS-models. On the other hand, x is detected 
as anomaly in function (2) if fhybrid (x) > η (0 ≤ η ≤ k), 
and vice versa, which is in fact a hybrid version of 
the Marker Evaluation, i.e. the decision is made by 

cooperative marking of D. In our case, η is set to 

∈

⎣ ⎦2
k  according to the major voting rule. Then, FPavg 

and FNavg are counted after 10 trails. 
 

4 Experiment analysis 
The data used in our experiment is a version of the 
1999 DARPA intrusion detection evaluation data set 
maintained by MIT Lincoln Lab [11]. The statistics 
of the original data, such as the number of bytes per 
second, the number of packets per second and the 
number of ICMP packets per second, are obtained by 
data preprocessing module for later use. As there are 
two weeks of data at hand, we use the data of the 
first week to train three isolated AIS models shown 
in Table 4, i.e. M1, M2 and M3, in the cultivator 
component. The population size of the whole 
detector is set to 300, with 100 for each AIS model. 
The training process finishes when no change occurs 
in Pmatrix. Di will then be sent to the evaluation 
component where FP and FN are evaluated using the 
data of the second week by the procedures described 
in Sec. 3.2.3. 

The other parameters are set as follows. The 
evolvement generation in GA is equal to 100. The 
reproduction, crossover and mutation rate are 0.7, 
0.25 and 0.05, respectively. The number of change of 
Pmatrix, denoted as T, is defined to be 10. η is set to 50, 
and β and γ equally to 0.3. Table 5 compares the 
means and standard deviations of detection 
performances of five different models after 10 trials 
in terms of FP and FN. 

 

Single 

Model1 

(M1) 

Single 

Model2 

(M2) 

Single 

Model3 

(M3) 

Multi-AIS

Models 

(Autarchy) 

Multi-AIS

Models 

(Marker)

FP(%)
5.78 

(2.31)

2.57 

(1.45)

2.35 

(1.53) 

1.39 

(0.74) 

2.06 

(1.12) 

FN(%)
33.67

(6.11)

42.53

(6.02)

47.12 

(8.56) 

23.81 

(5.78) 

17.94 

(6.65) 

Table 5. An example of FP and FN comparison between single 

model and multi-AIS-models 

 From Table 5, it can be seen that the FP and FN 



yielded by multi-AIS-models are much lower than 
those by each single model. FP becomes higher 
when multi-AIS-models adopt the autarchy way of 
hybrid evaluation scheme while FN is greater when 
the marker evaluation is used. 

To this end, two conclusions can be reached: (1) 
the "pressure" produced during training and testing 
effectively invokes the dynamic configuration of AIS 
models such that the hybrid model set achieves better 
self-adaptability and detection performance. (2) A 
hybrid evaluation scheme based on multi-AIS- 
models improves the detection performance while 
different hybrid ways can lead to different FP and 
FN trends, providing a possibility of choice for 
different application needs. 

Although multi-AIS-models outperforms each 
single model in detection, it is computationally more 
expensive, especially when FPavg > β or FNavg > γ 
during training. According to the average statistics 
from experiment, the multi-AIS-models were 
reinitialized for 5 to 6 times out of 10. 
 
 

5 Conclusion 
 In this paper, we propose a novel IPAisys to 
improve the adaptability of AIS by optimally 
integrating and configuring various immune models 
in a unified framework. In particular, the IPAisys is 
superior to the traditional application-specific model 
in the following aspects: (1) it offers a platform for 
easy comparison between different AIS models and 
algorithms; (2) it is provided with the ability to find 
optimal model set by self-learning; (3) A hybrid 
evaluation scheme is naturally embedded, leading to 
an improved detection performance. 
 In the future work, unit library and model 
library can be introduced to make the assembly 
process of AIS model set more intelligent. Apart 
from that, the change rules of Pmatrix and the hybrid 
evaluation mechanism can be further exploited to 
improve the performance of the system. 
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