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Abstract: - In this paper, a method for estimating the size of relational query results is proposed. The approach is 
based on the estimates of the attribute distinct values. On the basis of our method, a set of parameters, the so-
called Canonical Coefficients, can be derived from actual data; they allow us to approximate both the 
multivariate data distribution and distinct values of attributes. In particular, the capability of analytic method to 
estimate selectivity factors of relational operations is considered. Some experimental results on real databases are 
also presented which show the promising performance of our analytic approach. 
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1   Introduction 
Solution of the well-known problem of query 
optimization in database systems has been widely 
applied also to many others non-traditional 
environments, including data warehouses and decision 
support systems. Whereas in past the hardware limits 
(small buffering memory-storage sizes and low 
processor speed) required efforts in establishing 
efficient strategies in order to minimize access to large 
data sets, at present, even if hardware limitation have 
been overcome, the same needs arise because modern 
applications run on huge amount of data in network 
context. A knowledge of data profile can yield 
advantages in activities such as data in warehouses are 
continually collected from different large databases, as 
data mining applications in decision support systems 
require to access large data sets for complex 
exploratory activity, and as decisions on how to move 
data in network for minimizing the data traffic. In fact, 
opportune metadata in data profiles permit the system 
service software (the query optimizer in database 
systems) to select the optimal query execution among 
different equivalent query execution strategies. In 
centralized and distributed environments, query 
optimizer parses and analyses the query, constructs 
possible access paths and estimates the cost of each 
path in order to determine the least expensive; in fact, 
in such systems, query plans diverge much in cost due 
to the database’s volume. This path is then selected as 
query execution plan. Because cost function always 
considers selectivity factor for relational operation, the 
performance of query execution module depends on 
accuracy of selectivity factor estimation [1], which 

proceeds in turn on estimation of number of tuples 
produced from a relational operator.  
Metadata describing data characteristics are collected 
in data profiles maintaining statistics about data as the 
form of data distribution, the data cardinality, the 
number of distinct values, and so on, in order to 
determine accurate estimates of the query counts and 
of the selectivity factor. 
In addition, to estimate the query selectivity factor, 
data profiles are also important in data mining 
applications and data analysis activities, where the user 
explores various hypotheses in data and would prefer 
an approximated count to a query in real time, rather 
than waiting for an exact count. This research field has 
conduced to the definition of AQUA systems which 
involve the estimate of summary data and the 
execution of aggregate queries with approximate 
answers derived by the data profile. To obtain 
reasonable cost estimates of query execution, the query 
optimizers needs estimates of sizes of the final and 
intermediate relations involved, depending from 
selectivity factor. The selectivity factor corresponds to 
the fraction of tuples which satisfy the query. The 
selectivity factor of restriction operation is the ratio of 
the cardinality of the result to that of the base relation. 
The selectivity of projection is the ratio of tuple size 
reduction due at the fact that some attributes are being 
removed. However often the duplicates are also 
removed. The join selectivity of one relation with 
another defines the ratio of the attribute values that are 
selected in one of the relations. Joins on more than two 
relations are usually considered as sequences of joins 
on two relations at a time.  



Traditionally, the estimate methods of the actual query 
selectivity factor are classified into parametric and 
nonparametric methods. The distinction is based on 
the method for determining data distributions. Here, 
the knowledge of attribute distributions plays a crucial 
role in estimating both selectivity factors and 
aggregate functions.  
Parametric methods assume that the distribution has a 
known form except for a few parameters (e.g. mean 
and standard deviation). By making this assumption, 
one only needs to estimate the parameters which 
complete the description of the shape of the 
distribution. Parametric methods are of interest 
because they summarize the distribution with a few 
parameters [2-4]. On the contrary, they do not provide 
accurate estimates when the actual data do not fit the 
assumed theoretical distribution. 
Nonparametric methods do not make a priori 
assumptions about the form of the distribution. 
Therefore, the distribution can be more difficult to 
estimate, and more storage is required than with 
parametric methods but these methods provide more 
accurate estimates. 
Several nonparametric methods have been proposed. 
We classify them into sampling-based [5-8] and 
histograms (equal-width, equal-height, variable-width 
and wavelets-based histograms  are well known 
examples [9-12]). 
Sampling based estimators describe faithfully the 
actual data distribution and increasing samples provide 
more accurate estimates. However, more time will be 
required to obtain run-time sampled information in 
addition to current query processing time which 
generally can not be reused for subsequent queries. 
Minimizing the sample size while maintaining estimate 
accuracy is the main objective of research in this area 
[4]. 
The histogram based methods store tables in the data 
profile for computing accurate estimates depending on 
the number of update operations, since frequent 
updates in database will change the data distribution 
and render expensive updating histograms which must 
be computed periodically to fit actual data distribution.  
We have presented an analytic approach based on the 
approximation of the actual multivariate data 
distribution of attributes by a series of orthogonal 
polynomials [13,14]. The method is a special case of 
least squares approximation by orthonormal functions 
and summarizes all the information on the data 
distribution by few data—the computed coefficients of 
the polynomial series. We have called them the 
Canonical Coefficients of the data, for they allow the 

selectivity factors and the main data statistics to be 
easily derived and efficiently computed with no access 
to the data warehouse. Moreover, data updates can 
immediately propagate to the canonical coefficients 
based on their so-called additive property. 
According to the encouraging results of the 
performance for the selectivity factor of the restriction 
operation in multidimesional environment [14], we 
apply the analytical approach to estimate the selectivity 
factor of join and projection operations. In these 
relational operations, the knowledge of distincts of 
database attributes plays a crucial role in improving the 
performance of the method  in estimating the 
selectivity factor. The analytic method, opportunely 
adapted, permits to enrich the descriptive contents of 
data profile with few metadata relative to the 
distribution of distances of distincts in the attribute 
value ranges. 
We describe the application of the analytic method to 
determine the selectivity factor of join and projection 
operations using a new approach based on the estimate 
of attribute distincts, which we have reported in our 
earlier work on this topic [15]. 
 
 
2   Related Works 
 
2.1   Join selectivity factor 
Join is used in relational algebra to match two relation 
on compatible attributes and it is defined, in terms of 
primitive operators, as a Cartesian product followed by 
a selection. The selection condition specifies a Boolean 
expression on attributes of relations and is called the 
join condition. The most common use of join involves 
join conditions with equality comparisons only and is 
called equijoin operation and we will refer to this 
operation using only the term “join”.  
When we consider the join T between relations R and 
S, the canonical formula giving the cardinality of join 
is card(T)= jρ × card(R) × card(S) where jρ is the join 
selectivity factor and represents the fraction of tuples 
of Cartesian product which satisfy the join condition.  
There are several methods for join cardinality 
estimating [16-21]. Some methods are based on 
integrity constraints of the relational schema and 
provide limits for join cardinality estimation (eg., 
Card(T)≤Card(R×S)); these methods don’t provide 
accurate estimations. Other methods assume arbitrarily 
that join attributes are uniformly distributed and that 
the number of distinct values of attribute T.X is 
min(dist(R.X), dist(S.Y)) [22]. However, it is very rare 

 



that attributes are uniformly distributed in real cases 
and the uniformity assumption leads to pessimistic 
results when data attributes follow to others 
distribution types as Normal, Gamma, Zipf, etc. 
Other nonparametric methods have been proposed. In 
worst case assumption method, join cardinality is 
estimated as card(R) × card(S). Worst case divided 2 
method minimizes errors produced by the worst case 
method. Method of perfect knowledge doesn’t produce 
errors but all occurrences of attributes values must be 
stored, so it is very expensive in memory and time 
consuming for updating [16]. Piece-wise uniform 
method has been proposed and used in [19] to estimate 
frequency distribution of join attributes by equal-width 
histograms. In this approach, attribute domain is 
divided into intervals and number of tuples holding 
values which fall into each is stored. Attribute 
distribution is approximate by a piece-wise linear 
curve which interpolates some point by a relative 
frequency histogram, which is then used to estimate 
size of relational query and parameters of intermediate 
results. Join range is divided in a number of intervals 
whose scale is function of number of distinct values of 
join range. To determine number of distinct values of 
join range, number of distinct values of joining 
attributes are to be known, but no method has been 
proposed to estimate them. So a way to obtain them, is 
to sort join attributes’ values and to eliminate 
duplicates, but this method is impractical due to the 
high cost of processing and maintenance on updating. 
Our approach estimates the resulting size of the 
relational join by evaluating distincts and using the 
estimation of actual distribution of join attributes. 
 
2.2   Projection selectivity factor 
The project operation reduces the number of attributes 
in a relation; it can be thought of as cutting it down 
vertically. The result of the project operation is a 
relation with a reduced number of attributes. The 
selectivity of projection is the ratio of tuple size 
reduction. Indeed, not only some attributes are 
removed in a projection, the duplicate tuples are 
removed also. 
In general, the approach for estimating the size of a 
projection consists into the ability of data statistical 
profile to fit actual multidimensional data distribution 
in order to derive estimates of the marginal distribution 
of the projected attributes.  
In [22] is described a non parametric approach based 
on the multidimensional histogram divided in equal-
sized buckets, assuming uniformity within the buckets. 
Parametric methods described in [23] assume that 

attributes are uniformly distributed and independent. 
Under these assumptions authors studied the 
probability distributions of the sizes of the projections 
testing various hypothesis. The assumptions of the 
independence and uniformity of attributes result 
inadequate to correctly represent many actual database 
instances. However, they simplify and speed the 
computations of parameters for run-time query 
optimizer in evaluating access plans. The model 
presented in [24] takes into account that values of 
attributes determine a time dependent active domain 
(the distinct values that are actually assumed, at a 
certain time). Others approach are based on fast ways 
to estimate distinct values [25-27]. 
Our approach estimates the resulting size of the 
relational project by evaluating distincts of active 
domains of attributes involved in the operation. 
 
 
3   The Analytic Method to Approximate 

Data Distribution 
Let R be a relation of cardinality N and let X be an 
attribute of R. Suppose dom(X)=[a,b] and let x1, x2, ..., 
xN   be the occurrences of X in R. 
We approximate the probability density function g(x) 
of the attribute X with 
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for all x∈X and for the opportune n. For each i = 0,1, 
.., n,  Pi(x) is the Legendre orthogonal polynomial of 
degree i, and coefficient ci is the mean value of Pi(x) 
on the instances of X. That is, 
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c0, c1, ..., cn's are computed with simple recursive 
formulae [14] and they are called the Canonical 
Coefficients of X. 
The approximation of the cumulative distribution 
function G(x) of g(x) is 
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Let I = [x1,x2] ⊆ [a,b] be a generic query-range of X. 
We denote with count(x;I) or N × percent(x;I) the 
number of tuples of R whose x value belongs to 
interval I. count(x;I) can be approximated by  
N × (G(x2)-G(x1)). 
 
 

 



4   Join selectivity estimation 
In this Section, we present our approach to estimate the 
cardinality of join operation between two relations R 
and S on respective attributes X and Y using the 
analytic model described in the previous Section.  
Let T=RÅX=YS, to estimate  
card(T) = jρ × card(R) × card(S), or equivalently for 
jρ, let x1, x2, ..., xdist(X) and y1, y2, ..., ydist(Y) be the 
ordered distinct values for attributes X and Y 
respectively. Then, 
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where CX(xi) and CY(yj) denote respectively the 
number of the tuples of R and S satisfying the 
condition xi = yj. In general, an estimation of CX(xi) 
and CY(yj) is obtained, without scanning R and S, 
using aggregate function percent as described in 
Section 3, as  

CX(xi) ≅  count(x;Ixi)=card(R)×percent(x;Ixi) 
CY(yj) ≅ count(y;Iyj)=card(S)×percent(y;Iyj) 

were Ixi = [(xi+xi-1)/2, (xi+xi+1)/2] and Iyi = [(yi+yi-1)/2, 
(yi+yi+1)/2]. So, the selectivity factor can be 
approximated as follows 
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The percent values depend on distinct values of 
attributes X and Y, which are often unknown. Many 
researchers suppose that differences between two 
adjacent domain values are approximately equal [20].  
The approach followed in this paper doesn’t make 
hypothesis about distinct values spacing distribution or 
their joining equivalence. Distinct values are 
approximated using canonical coefficient which can be 
easily computed and updated whenever a new distinct 
value is inserted in the database.  
Let {x1, x2, ..., xd} be the distinct values of attribute X. 
The canonical coefficients (di)1≤i≤n up to degree n, that 
contain information about how distinct values are 
spaced, are computed as follows 
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were we suppose that, for each xj, in the interval ]xj-
δ/2, xj+δ/2[ there are distributed a sufficiently high 

number dns of random values, with δ= (b-a)/card(X). 
We assume that x is an approximation of a distinct 
value xi, if it verifies the condition count(x;I) ≈ dns in 
the interval I or, equivalently, | count(x;I) – dns |  ≤ ε  
for ε = k  × dns     (0<k<1).  The detailed derivation of 
the method is reported in [15]. Here we give the 
algorithm that provides approximations of distinct 
values and their number starting from the knowledge 
of canonical coefficient di: 
 
Algorithm 1: determination of distincts. 
d:=1; x(d):=a; x1=a+δ/2; x2= x1+δ; eps = 0.05* dns 
 while (x2<b) do begin 
  I:=[x1,x2]; occ:= count(x, I); 
  if    eps ≥ | dns− occ   then begin 
     d := d+1; 
     x(d) := (x1+x2)/2 end 
  x1:=x2; x2 := x1+δ 
  end 
 d := d+1; x(d) := b 
 
When the above procedure terminates, value d 
approximates the number of distinct values for X in 
[a,b] and x(1..d) contains approximations of distinct 
values. 
Because of in computing canonical coefficient up to 
degree n in Ij=]xj-δ/2, xj+δ/2[ we have distributed dns 
occurrences, then it is expected that count(x, Ij) ≅ dns. 
So, the Algorithm 1 analyses interval [a, b] searching 
sub-interval I which satisfies the condition of the 
required estimation accuracy  at the given confidence 
level, defined empirically as the fraction 0,05 of the 
dns quantity in the interval I of amplitude δ. 
Series of canonical coefficients (di)0≤i≤n are different 
from series which approximates distribution of 
attribute X, and aggregate function count in Algorithm 
1 is calculated using (di)0≤i≤n . 
Figure 1 shows the number of distinct values of an 
attribute correctly estimated by the Algorithm 1 for 
approximation degree n = 5, 6, …33  and  dns = 50 in a 
real case relation with 80 distinct values 
The performance of the shown example is to be 
considered as typical of the average behaviour of the 
Algorithm 1. 
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                       Count of correctly estimated distincts 

 
Fig.1- Performance of database distinct estimation. 

 
Assuming that sets X = {xi}0≤i≤dist(X) and Y = (yj)0≤j≤
dist(Y) estimated with Algorithm 1 are denoted with  
X  = { x i}0≤i≤dist(X) and Y  = { y j}0≤j≤dist(Y), in 
computing join selectivity instead of applying (5) we 
use 
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We consider x i ≅ y j if  x i − y j  is lower than the 
mean distance among approximate distinct values 
respectively of X and Y [15]. 
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Fig.2- Comparison of the performance of methods for 

estimating join selectivity. 
 

Figure 2 shows an example of the performance of join 
approximation in real database case. The comparison 
of analytic method with equal-width histogram method 
and equal-depth histogram is also reported. 
 
 
5   Projection Selectivity Estimation 
The model of Gardy Peuch [23], based on attribute 
independence and uniform distribution assumptions, is 
frequently used to estimate the size of projections. 
Using probabilistic argument, they derived formulas to 
compute the l tuples of projection πY(R) from the m 
tuples of a relation R(X) with Y ⊆ X as expected value 
of all possible randomly generated projections. This 
value is computed as: 
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where dx and dy are the product of distinct value 
numbers respectively of domains of attributes X and of 
attributes Y. 
We have used the same formula, but we estimate the 
distinct values with canonical coefficients considering 
the effective distinct values in the domain (i.e. the 
active domain). In fact, canonical coefficients allow to 
estimate current distincts for they are updated when a 
new/old occurrence is added/removed in/from 
database. For example, if values (di)0≤i≤n , dns, and δ 
are stored in statistical profile at a certain time and an 
occurrence x′ arrives for attribute X in database, the 
Algorithm 2 updates canonical coefficients di when it 
establishes that x′ is a distinct value. 
 
Algorithm 2: updating of canonical coefficients  
   (di)0≤i≤n for distincts 
 I = [x′ - δ/2, x′ + δ/2], 
 if |d*dns* percent(x,I) − dns| ≤ eps 
  then x′  already exists in database 
  else x′ is a new distinct value hence 

dnsd

randxPdnsdd
d

dns

k
ii

i ×+

×δ+
δ

−+××

=
∑
=

)1(

))1,0(
2

'()(
: 1 ; 

i=0,...,n;  d := d + 1 
 
We have performed experiments on a real database 
considering the relation R(A,B,C,D,E,F) with m = 
104828 tuples. According to empirical tests, the 
distinct values of the attributes are approximated using:        
dns = 50, ε = 0,005 × dns and degree n = 15. 

 



Figures 3a and 3b report the performance of the 
projection selectivity respectively in the bidimensional 
and in tridimensional cases comparing the method of 
Gardy Peuch (GP) to the analytic method (DD). 
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Fig. 3  Comparison of the performance of GP and DD 

methods for estimating projection selectivity 
respectively  in the  (a) bidimensional  and     
(b) tridimensional cases. 

 
 
The errors obtained in applying the analytic method 
estimates to projection selectivity are in many cases 
significantly reduced with respect to GP method. We 
have observed that analytic method improves sensibly 
performances if the projection is performed on two 
attributes respect to the case of three attributes. This 
result offers a greater advantages if we consider that 
plans of optimizers normally privilege selection and 
projection operations before the more expensive 
operations. Therefore, the tentative of drastic 
reduction of query sizes using projection on few 
attributes can be supported by better accurate 
estimates. 

6   Conclusion 
Determining the selectivity factor estimates of 
relational operations is a useful task for optimizers to 
choice optimal path of execution of query processing. 
Traditional methods use parametric or nonparametric 
approaches for representing the data profiles which 
contains metadata describing the data distribution. The 
presented method follows an analytic approach and 
stores all information of data profile in canonical 
coefficients. It use the same method for representing 
both the multivariate data distribution and distinct 
values. The analytic method, already successfully 
tested in the estimate of selectivity factor for restriction 
operation, has been adapted and tested here for 
estimating join and projection operations. First 
experimental results show good performance and 
improvements with respect to other conventional 
methods. Moreover, its application is not limited to 
estimation of selectivity factor of relational operations. 
Several multidimensional aggregate functions and 
statistical quantities can be easily and accurately 
estimated using canonical coefficients. This application 
has been receiving attention in nontraditional emerging 
areas of database technology such as the approximate 
query processing field. It provide approximate answers 
to the queries very quickly and is particularly attractive 
for large-scale and exploratory activities in OLAP 
applications. 
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