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Abstract: Micro Electro Mechanical Systems will soon usher in a new technological renaissance. Just as ICs 
brought the pocket calculator, PC, and video games, MEMS will provide a new set of products and markets. 
Learn about the state of the art, from inertial sensors to microfluidic devices. 
Over the last few years, considerable effort has gone into the study of the failure mechanisms and reliability of 
MEMS. Although still very incomplete, our knowledge of the reliability issues relevant to MEMS is growing. 
One of the major problems in MEMS production is fault detection. After fault detection or fault diagnosis, we 
can use hardware or software methods to overcome it. Most of MEMS have nonlinear and complex models. 
So it is difficult or impossible to detect the faults by traditional methods, which are model-based. In this paper 
RBF neural network is used for fault detection in a RF MEMS. 
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1   Introduction 
Reliability of Micro Electro Mechanical Systems 
(MEMS) is a very young and fast-changing field. 
Fabrication of a MEMS System involves many new 
tools and methods, including design, testing, 
packaging and reliability issues. Especially the latter 
is often only the very last step that is considered in 
the development of new MEMS. The early phases 
are dominated by considerations of design, 
functionality and feasibility; not reliability [1]. 
One important reason for missing reliability data is 
that in view of the use of new materials and process, 
the material data, the know-how on failure modes, 
the means and the procedures to perform reliability 
tests and consequent failure analysis are often not 
present and unknown [2]. 
The traditional approaches to fault detection and 
diagnosis involve the limit checking of some 
variables or the application of redundant sensors. 
More advanced methods rely on the spectral analysis 
of signals emanating from the machinery or on the 
comparison of the actual plant behavior to that 
expected on the basis of a mathematical model. The 
latter approach includes methods which are more 
deterministically framed and those formulated on 
more of a statistical basis, and parameter estimation. 
In methods based on mathematical models, the 
models obtained must be linear. To work with non-
linear systems, it is necessary to select a point and 
obtain a linearized model around it [3]. 
In MEMS most of the parts are strictly non linear 
and finding a proper model is difficult or sometimes 

impossible. So using mathematical model for fault 
detection in MEMS has some drawbacks. The 
constraints of this kind of model have motivated the 
development of artificial intelligent approaches.  
In this paper, we will use neural networks for fault 
detection in MEMS. 
 
 
2   Fault detection methods 
The work on fault diagnosis in the AI community 
initially focused on the expert system or knowledge-
based approach where heuristics are applied to 
explicitly associate symptoms with fault hypothesis. 
The short coming of a pure expert system approach  
led to the development of model-based approaches 
based on qualitative models in the form of 
qualitative differential equations, signed digraphs, 
qualitative functional and structural models. 
Other approaches assume the availability of process 
history based data which are then used to develop 
neural network approaches. 
 Neural networks mimic intelligence. The learning 
or training nodes of neural networks is different 
from that of traditional statistical methods. 
The results of comparison between a Model Based 
Fault Detection method (MBFD) and a Neural 
Network fault detection and classification method is 
provided in Table1 [4]. 
As we can see, both of them have their strengths and 
weaknesses. In MEMS usually there is not a proper 
and accurate model. Additionally, our knowledge 
about faults, their sources and effects is not 
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complete. So usually there are novel or 
undetermined faults which are not considered in 
model. As a result neural network is a proper tool 
for fault detection and classification in MEMS. 
 

Criterion MBFD NN 
Novel faults Poor Fair 
Robustness to noise Fair Good 
Resolution Fair Good 
Adaptability Good Fair 
Range of application Good Bad 

Table1- Comparison of MBFD and NN 
 

Generally speaking, there are four types of neural 
networks: 
-Back propagation Neural Network (BPNN) 
-Probabilistic Neural Network (PNN) 
-Self-Organizing Mapping (SOM) 
-Radial Basis Function Neural Network (RBF) 
There are some drawbacks to BPNN and SOM. The 
BPNN requires a large number of training patterns 
to let network learn the underlying mapping 
function. The second problem is that the accuracy of 
the training patterns should not be a measure of 
whether a model is good or not. BPNN has a low 
reliability with novel data. 
SOM is known as a topological mapping algorithm, 
in which patterns with similar characteristics cluster 
together automatically. Output nodes will thus be 
ordered by competitive learning. The learning rate 
and neighbor size of SOM have to be optimally 
selected by experience, and a SOM net needs a large 
time to converge [5]. 
In this paper RBF is used for fault detection and 
classification in MEMS. Two different methods are 
used for learning. The first is Derivative-based 
optimization method and in the other method 
Kalman filtering is used for optimal selection of 
Radial Basis Functions. 
 
 
3 Radial Basis Functions 
There have been a number of popular choices for the 
g(.) function at the hidden layer of RBFs. The most 
common choice is a Gaussian function of the form: 

)1()/exp()( 2βυυ −=g  

Where, β is a real constant. Other hidden layer 
functions that have often been used are the  
multiquadric function: 

)2()()( 2/122 βυυ +=g  

And the inverse multiquadric function: 

)3()()( 2/122 −+= βυυg  

Where β is a real constant. Scince RBF prototypes 
are generally interpreted as the centers of receptive 
fields, hidden layer functions should have the 
following properties: 
1-The response at a hidden neuron is always 
positive. 
2-The response at a hidden neuron becomes stronger 
as the input approaches the prototype. 
3- The response at a hidden neuron becomes more 
sensitive to the input as the input approaches the 
prototype. 
 
3.1   Derivative Based Optimization 
The response of an RBF, with the hidden layer 
function, g(.) can be written as follows: 
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We will use the following notation as short hand for 
the weight matrix on the right-hand side of Eq(5). 
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If we are given a training set of M desired input-
output responses {xi,yi}, (i=1,2,…,M), then we can 
augment M equations of the form of Eq(4) as 
follows: 
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We will introduce the following notation for the 
matrix on the right hand side of Eq(6). 
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In this case we can write the matrix on the right-
hand side of Eq(6) as: 
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In this case we can write Eq(6) as  

)10(ˆ WHY =  

Now, if we want to use gradient descent to minimize 
the training error, we can define the error function: 

)11(ˆ
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1 2
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It has been shown that gradient of error can be 
computed as 
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Now we can optimize the RBF with respect to the 
rows of the weight matrix W and the prototype 
location vj by iteratively computing the above 
partials and performing the following updates: 
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Where the η is the step size of the gradient descent 
method. This optimization stops when wi and vj 
reach local minima. 
 
 
3.2   Using Kalman Filter for Optimization 
Alternatively we can use kalman filtering to 
minimize the training error. Derivation of the 
extended kalman filter are widely available in the 
literature [6]. Consider a nonlinear finite 
dimensional discrete time system of the form  

)16()(1 kkk wf +=+ θθ  

)17()( kkk vhy += θ  

Where the vector θk is the state of the system at time 
k, wk is the process noise, yk is the observation 
vector, vk is the observation noise, and f(.) and h(.) 
are nonlinear vector functions of the state. Assume 
that the initial state θ0 and the noise sequence {vk} 
and {wk} are Gaussian and independent from each 
other with 

)18()( 00 θθ =E  

)19(]))([( 00000 PE T =−− θθθθ  

)20(0)()( == kk vEwE  

)21()( kl
T
lk QwwE δ=  

)22()( kl
T
lk RvvE δ=  

The problem addressed by the extended Kalman 
filter is to find an estimate 1

ˆ
+kθ  of  1+kθ  given yj 

(j=0,1,…,k). If the nonlinearity in Eq(16,17) are 
sufficiently smooth, we can expand them around the 
state estimate kθ̂  using Taylor series to obtain 

)23()ˆ()ˆ()( HOTFff kkkkk +−×+= θθθθ  
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Neglecting the higher order terms in Eq(23,24), the 
system in Eq(16,17) can be approximated as 

)26(1 kkkkk wF φθθ ++=+  

)27(kk
T
kk vHy ϕ++=  

Where φk and фk are defined as 

)28(ˆ)ˆ( kkkk Ff θθφ −=  

)29(ˆ)ˆ( k
T
kkk Hh θθϕ −=  

It can be shown that the desired estimate nθ̂ can be 
obtained by the recursion [7] 

)30()];ˆ([)ˆ(ˆ
11 −− −+= kkkkk hyKf θθθ  

)31(;)( 1−+= kk
T
kkkk HPHRHPK  

)32(.)(1 QFPHKPFP T
kk

T
kkkkk +−=+  

Kk is known as the kalman gain. In the case of a 
linear system, it can be shown that Pk is the 
covariance matrix of the state estimation error, and 
the state estimate 1

ˆ
+kθ  is optimal in the sense that it 

approaches the conditional mean 
)],...,,([ 101 kk yyyE +θ for large K. 
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We can apply a similar technique to the training of 
RBF networks. In general we can view the 
optimization of the weight matrix W and the 
prototypes vj as a weighted least-squares 
minimization problem, where the error vector is the 
difference between the RBF outputs and the target 
values for those outputs. Consider the RBF network 
with m inputs, c prototypes, and n outputs. We use y 
to denote the target vector for the RBF outputs, and 

)ˆ( kh θ to denote the actual outputs at the kth 
iteration of the optimization algorithm. 

Y=[y11 … y1M … yn1 … ynM]T             (33) 
T
knMnMk yyyyh ]ˆ...ˆ...ˆ...ˆ[)ˆ( 1111=θ       (34) 

N is the dimension of the RBF output and M is the 
number of training samples. The state of the 
nonlinear system can then be represented as 

θ=[w1
T … wn

T  v1
T  … vc

T ]T              (35) 
The vector θ thus consist of all (n(c+1)+mc) of the 
RBF parameter arranged in a linear array. The 
nonlinear system model to which the Kalman filter 
can be applied is 

.θk+1= θk ,                                    (36) 
Yk=h(θk)                                      (37)  

Where h(θk) is the RBF network’s nonlinear 
mapping between its parameters and its output. In 
order to execute a stable kalman filter algorithm, we 
need to add some artificial process noise and 
measurement noise to the system model. So we 
rewrite Eq(36,37) as 

θk+1= θk +  wk                             (38) 
Yk=h(θk)+vk                               (39) 

Where wk and vk are artificially added noise 
processes. Now we can apply the kalman recursion 
of Eqations.  f(.) is the identity mapping and yk is the 
target output of the RBF network. )ˆ( kh θ  is the 
actual output of the RBF network given the RBF 
parameters at the kth iteration of the kalman 
recursion. Fk is the identity matrix (a constant even 
though it is written as a function of k). The Q and R 
matrices are tuning parameters which can be 
considered as the covariance matrices of the 
artificial noise processes wk and vk , respectively. It 
can be shown that the partial derivative of the RBF 
output with respect to the RBF network parameters 
is given by: 
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Where H (with no subscript) is the (c+1)* M matrix 
given in Eq(9), wij is the element in the ith row and 
jth column of the W weight matrix, 

)(
2

jiij vxgg −′=′ , xi is the ith input vector, and vj 
is the jth prototype vector. Hw is an n(c+1)*nM 
matrix, Hv is an mc*nM matrix, and Hk is an 
[n(c+1)+mc]*nM matrix. Now that we have the Hk 
matrix, we can executethe recursion of 
Eq(30,31,32), thus using the extended kalman filter 
in order to determine the weightmatrix W and the 
prototypes vj. 
 
 
 
4   Solution Results 
 EM3DS is a MEMS simulator software, which has 
been used for fault simulation in RF MEMS. 20 
faults and one fault free pattern have been simulated 
in a RF low pass filter MEMS. These 20 faults 
consist of both digital and analog faults. Changing 
substrate resistance, magnetic and electric 
properties, short and open, disconnection, 
connection between separate parts and some other 
faults have been simulated by software. The S 
parameters are calculated and used for training and 
testing RBF neural network. 
We have used a two dimension data as input to RBF 
neural network. First of all, two RBF networks with 
Gaussian and multiquadric function are used. The 
training algorithm is gradient descent. The result has 
been shown in Tables 2, 3. 
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Detected 
as Fault 

Detected as 
Fault free 

Correct fault 
detection percent 

40 Faulty 
Pattern 25 15 %62.5 

10 Fault free
Pattern 
 

4 6 %60 

Total 50   %62 
Table2- Multiquadric function and gradient descent learning 

 
 

Detected 
as Fault 

Detected as 
Fault free 

Correct fault 
detection percent 

40 Faulty 
Pattern 26 14 %65 

10 Fault free
Pattern 
 

4 6 %60 

Total 50   %64 
Table3- Gaussian function and gradient descent learning 

 
In second method, the same RBF networks are used 
but for learning, kalman filter has been used. 
Kalman filter helps the network to find optimum 
parameters. The results for the same patterns have 
been shown in Table4, 5. 
 

 
 Detected 

as Fault 
Detected as 
Fault free 

Correct fault 
detection percent 

40 Faulty 
Pattern 29 11 %72.5 

10 Fault free
Pattern 
 

4 6 %60 

Total 50   %70 
Table4- Multiquadric function and Kalman filter learning 

 
 

Detected 
as Fault 

Detected as 
Fault free 

Correct fault 
detection percent 

40 Faulty 
Pattern 31 9 %77.5 

10 Fault free
Pattern 
 

3 7 %70 

Total 50   %76 
Table5- Gaussian function and Kalman filter learning 

 
 
4   Conclusion 
Fault detection in MEMS is an important issue in 
MEMS production and maintenance. Most of the 

faults occure in microscopic dimension and we have 
not enough knowledge about it. Finding a proper 
model is usually difficult or even impossible. In this 
paper neural networks are proposed for fault 
detection. BPNN and Kohonen neural networks 
have some drawbacks. There are always novel faults 
in MEMS, which have not learnt to neural network, 
already. BPNN and Kohonen networks can’t find 
these faults properly and correct fault detection 
percent is about 50-60. 
In this paper, RBF neural networks have been used 
for fault detection. The results in Tables2,3,4,5 show 
that Gaussian function with kalman filter learning 
algorithm has the best result. The results are better 
than BPNN and Kohonen neural networks. 
Further research could focus on the application of 
kalman filter training to RBF network with 
alternative forms of the generator functions. In 
addition, the convergence of the kalman filter could 
be further improved by more intelligently 
initializing the training process. 
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