
 New Characteristics in FSQL, a Fuzzy SQL for Fuzzy Databases*

JOSÉ GALINDO
Dpto. Lenguajes y Ciencias de la Computación,
University of Málaga, Spain

Abstract: - The FSQL language is an extension of the SQL language which permits us to handle fuzzy
information in fuzzy or crisp databases. The first version of FSQL was implemented for Oracle Databases in
PL/SQL. This first version defined basic fuzzy (or flexible) queries for fuzzy or traditional databases. In this
work we present some new characteristics for FSQL. These new definitions include four new fuzzy
comparators, five new fuzzy attributes, six new fuzzy constant types, new characteristics in the fulfillment
thresholds, dynamic change of functions in logic operations, fuzzy set operators, the ALTER FSQL statement,
and some useful functions to handle fuzzy attributes and fuzzy values. Besides, we outline here the definition of
some DDL statements of FSQL and eighteen fuzzy comparators for fuzzy time in FSQL. The advantages of
these new characteristics are obvious: basically they allow a greater expressiveness.

Key-Words: - Fuzzy relational databases, Fuzzy SQL, FSQL, Fuzzy queries, Fuzzy comparators.

* Partially supported by MCYT project TIC2002-00480.

1 Introduction

At a theoretical level, there exists many Fuzzy
Relational Database (FRDB) models that, based on
the relational model, they extend it in order to allow
storing and/or treating vague and uncertain
information [1][8]. One of them, the GEFRED model
[4][7], is an eclectic synthesis of the different models.

On the other hand, the FSQL or Fuzzy SQL
language [3][4][5] is an extension of the SQL
language which permits us to write flexible (or fuzzy)
conditions in our queries to a fuzzy or traditional
database. This language allows us to express
sentences taking into account the characteristics of
imprecise information: fuzzy conditions, fuzzy
values, computing fulfillment degrees, establishing
fulfillment thresholds...

The SQLf language [2] only study the SELECT
statement with fuzzy comparisons between crisp
values (columns) with linguistic labels and the use of
the “approximately equal” between crisp values (the
only fuzzy comparator included in SQLf). The best of
SQLf is the quantified statements (with fuzzy
quantifiers).

More recently, the FuzzyEER model [5][6][9] has
been defined as an extension of the EER model to
create conceptual schemas with fuzzy semantics and
notations. This extension provides new and useful
definitions: fuzzy attributes, fuzzy entities, fuzzy
relationships, fuzzy specializations… In this paper we
propose to incorporate some FuzzyEER concepts in
FSQL. Besides, we include in this language some
tools, which become very useful in some operations.

The next section defines the fuzzy attributes
included in the FuzzyEER model. After, we explain
some aspects about FSQL, emphasizing the new
characteristics.

2 Fuzzy Attributes

A fuzzy database needs a special data dictionary in
order to store the information related to the inexact
nature or context of each fuzzy attribute. We call it
the Fuzzy Metaknowledge Base (FMB).

In order to model fuzzy attributes we distinguish
between two classes of fuzzy attributes: Fuzzy
attributes whose fuzzy values are fuzzy sets and
fuzzy attributes whose values are fuzzy degrees. Each
class includes some different fuzzy datatypes:

2.1 Fuzzy Sets as Fuzzy Values

These fuzzy attributes may be classified in four
datatypes. This classification is performed taking into
account the type of referential or underlying domain.
In all of them the values Unknown, Undefined, and
Null are included:

• Type 1: These are attributes with “precise data”,
classic or crisp (traditional, with no imprecision).
However, we can define linguistic labels in its
domain and we can use them in fuzzy queries.
This type is useful for extending traditional
databases allowing fuzzy queries to be made
about classic data. For example : “Give me

employees that earn a lot more than the minimum
salary” (salary must be a well known attribute).

• Type 2: These are attributes that gather
“imprecise data over an ordered referential”.
These attributes admit both crisp and fuzzy data,
in the form of possibility distributions over an
underlying ordered dominion (fuzzy sets). It is an
extension of the Type 1 that does, now, allow the
storage of imprecise information, such as: “he is
approximately 2 metres tall”. The most complex
of these fuzzy sets are the so-called extended
trapezoidals. This novel type of fuzzy set is
composed by linear functions in some pieces. It
allows great flexibility (even for non-convex
sets). For the sake of simplicity the simple
trapezoidal functions (Figure 1) are more
common. Note that this underlying domain is
continuous and ordered (usually it will be the real
number dominion or the time).

• Type 3: They are attributes over “data of discreet
non-ordered dominion with analogy”. In these
attributes some labels are defined (e.g. "blond",
"ginger", "brown", etc.) that are scalars with a
similarity (or proximity) relationship defined over
them, so that this relationship indicates to what
extent each pair of labels resemble each other.
They also allow possibility distributions (or fuzzy
sets) over this dominion, like for example , the
value {1/dark, 0.4/ginger}, which expresses that a
certain person is more likely to be dark than
ginger. Note that underlying domain of these
fuzzy sets are the set of labels and this set is
discreet and non-ordered.

• Type 4: These attributes are original and they are
defined in the same way as Type 3 attributes,
without it being necessary for a similarity
relationship to exist between the labels.

2.2 Fuzzy Degrees as Fuzzy Values

The domain of these degrees can be found in the
interval [0,1], although other values are also
permitted, such as a possibility distribution (usually
over this unit interval). In order to keep it simple, we

will only use degrees in the interval [0,1], because the
other option offers no great advantages.

The meaning of these degrees is varied and
depends on their use. The processing of the data will
be different depending on the meaning. The most
important possible meanings of the degrees used by
some authors are [4][5]: Fulfilment degree,
Uncertainty degree, Possibility degree and
Importance degree. Of course, we can define and use
other meanings. In this paper we do not aim to
demonstrate the usefulness of these degrees and their
different meanings. Several authors who have used
these degrees have already done so.

The ways of using these fuzzy degrees are
classified in two families: Associated and non-
associated degrees.

Associated degrees are associated to a specific
value to which they incorporate imprecision. These
degrees may be associated to different concepts [5]:

• Degree in each value of an attribute (we

will call it as Type 5): Some attributes may
have a fuzzy degree associated to them. This
implies that each value of this attribute (in
every tuple or instance) has an associated
degree, measuring the level of fuzziness in
that value. In order to interpret it, we need to
know the meaning of the degree and the
meaning of the associated attribute.

• Degree in a set of values of different
attributes (Type 6): Here, the degree is
associated to some attributes. It joins the
fuzziness of some attributes in only one
degree.

• Degree in the whole instance of the
relation (Type 7): This degree is associated
to the whole tuple of the relation and not
exclusively to the value of a specific attribute
of the tuple (or instance). Usually, it can
represent something like the “membership
degree” of this tuple (or instance) to the
relation (or table) of the database. This
degree represents the fuzzy degree of a fuzzy
relation (for example, a fuzzy entity in the
FuzzyEER model).

Non-associated degrees (Type 8): There are

cases in which the imprecise information, which we
wish to express, can be represented by using only the
degree, without associating this degree to another
specific value or values. For example, the
dangerousness of a medicine may be expressed by a
fuzzy degree.

The first version of FSQL only includes the fuzzy
attributes Type 1, 2 and 3.

Figure 1. Trapezoidal possibility distributions: A, B.

3 Some Aspects of FSQL Language

The FSQL language extends SQL in order to handle
fuzzy information and to express fuzzy sentences.
The main extensions in FSQL are the followings. We
will expose them indicating the new characteristics,
which we present in this paper, and the old
characteristics.

3.1 Fuzzy Constants

In FSQL, we can use the fuzzy constants as detailed
and explained in Table 1. If an attribute is capable of
fuzzy treatment then linguistic labels can be defined
on it. These labels will be preceded with the symbol
$ to distinguish them easily. Labels for attributes
with an ordered underlined fuzzy domain (Type 1 and
2) have an associated possibility distribution (usually
with a trapezoidal form like Figure 1).

It should be noted that the non-continuous
possibility distributions (the last four constant types
in Table 1) are also disjunctive values. The new

constants in FSQL are these four types, the extended
trapezoid and the explicit approximate value (n+-m),
which is represented with a triangular function
centered in n and with base equal to 2m. The previous
definition of FSQL included the implicit approximate
value (#n) where the only possible margin is the
value stored in the FMB.

Besides, Table 1 shows the fuzzy datatypes that
can store and use these fuzzy constants (in queries,
fuzzy conditions, etc.). Some implementations may
limit the number of elements in the stored non-
continuous possibility distributions or in the
extended trapezoid.

3.2 Fuzzy Comparators

In addition to the typical comparators (=, >, >=...),
FSQL includes the eighteen fuzzy comparators in
Table 2. The first version of FSQL only included
fourteen. As in SQL, fuzzy comparators compare one
column with one constant or two columns of the same
(or compatible) type.

Fuzzy Constant Significance Store in Use in
UNKNOWN Unknown value but the attribute is applicable. 2, 3, 4 2, 3, 4
UNDEFINED The attribute is not applicable or it is meaningless. 2, 3, 4 2, 3, 4
NULL Total ignorance: we know nothing about it. All All
$[α,β,γ,δ] Fuzzy trapezoid with α ≤ β ≤ γ ≤ δ (Figure 1). 2 1, 2

$[α,β,γ,δ,
P1/N1,…,Pn/Nn]

Extended fuzzy trapezoid (with some points Pi/Ni
where all the Ni are between α and β or between γ and δ).
Values β and γ are both optional. If they do not exist, then
this constant is a fuzzy value without kernel.

2 1, 2

[n,m] Interval “Between n and m”. 2 1, 2
 n+-m Fuzzy value “Approximately n”: triangle n ± m. 2 1, 2
#n Fuzzy value “Approximately n”: triangle n ± margin,

where margin is stored in the FMB for each attribute.
2 1, 2

$label Linguistic Label: it may be a trapezoid or a scalar (defined
in FMB).

2, 3, 4 1, 2, 3, 4

{P1/L1, P2/L2,
…, Pn/Ln}

Non-continuous possibility distribution on labels, where
P1, P2, …, Pn are the possibility values and L1, L2, …,
Ln are the labels.

3, 4 3, 4

{L1, L2,…, Ln} Non-continuous possibility distribution on labels, where
L1, L2, …, Ln are the labels, with possibility degrees 1
for all of them: {1/L1, …, 1/Ln}.

3, 4 3, 4

{P1/N1, P2/N2,
…, Pn/Nn}

Non-continuous possibility distribution on numbers,
where P1, P2, …, Pn are the possibility values and N1,
N2, …, Nn are the numbers.

2 1, 2

{N1, N2,…, Nn} Non-continuous possibility distribution on numbers,
where N1, N2, …, Nn are the numbers, with possibility 1
for all of them: {1/N1, …, 1/Nn}.

2 1, 2

Table 1: Fuzzy constants that may be used in FSQL statements and
the fuzzy datatypes which can store and use them.

As possibility comparators are more general (less
restrictive) than necessity comparators, necessity
comparators retrieve fewer tuples, and these tuples
necessarily comply with the conditions (whereas with
possibility comparators, the tuples only possibly
comply with the condition, without any absolute
certainty). Table 3 shows the definition for all the
fuzzy comparators in the Possibility/Necessity family
for fuzzy attributes Type 1 and 2, with respect to
trapezoidal functions (Figure 1).

In attributes with a non-ordered underlying
domain (Fuzzy Type 3 or 4) only the fuzzy
comparators FEQ, FDIF, INCL and FINCL can be
used, since they lack order.

Comparator INC and FINCL do not use
possibility and necessity measures, and INCL is more
restrictive than FINCL (INCL retrieves less rows
than FINCL). Comparator INC examines if one
fuzzy value is included in other, returning a crisp
value of the tri-valued logic:

∀≤=

otherwise
),()(if

 are or if

xxx BA
NULLBA

FALSE
TRUE
NULL

B INCL A

FINCL defines a degree of subsethood. This
degree is computed by

)(
)()(

A
BAA

B) FINCL CDEG(A
Card

CardCard I−
=

where Card is the cardinality of the membership
function. The intersection of A and B may use the
minimum t-norm. Thus, if CDEG(A FINCL B) =
1, this means that A is totally included in B. In the
other extreme, if CDEG(A FINCL B) = 0, then this
means that A is not included in B at all.

Operator NOT can precede to every condition. The
fuzzy comparator of “inequality” or “possibly
different” may be modeled denying (with NOT) a
comparison with FEQ or NFEQ, using the following
format: NOT A FEQ B. However, this method

obtains different results to when FDIF and NFDIF
are used, because the NFDIF comparator must be
more restrictive than FDIF. Then, by definition
NFDIF denies the comparison with FEQ, and FDIF
denies the comparison with NFEQ.

Furthermore, the behavior of the NOT operator
may be changed (see Section 3.4 and 3.6).

In order to define the comparators FEQ/FDIF for
Fuzzy Attributes Type 3 and 4, let us suppose that we
want to compare two possibility distributions, F and
X, on the linguistic labels of a fuzzy attribute Type 3:
F FEQ X, where

FLENFFPF ,...,2,1with}label/{ == iii

XLENXXPX ,...,2,1with}label/{ == jjj

labelFi and labelXj being linguistic labels, which
belong to the same attribute and therefore they can be
compared with its similarity relation. The values FPi
and XPj are the possibility degrees, in [0,1],
associated to these labels respectively. LENF and
LENX indicate the number of pairs {degree/label} of
the possibility distributions F and X, respectively,
with LENF ≥ 1 and LENX ≥ 1.

The compatibility degree of F and X is
subsequently computed by:

})label,label({max
,...,2,1

,...,2,1
jijiR

j
i

XPFPXFX) FEQ CDEG(F
XLEN
FLEN

∗∗=
=

=
µ

where)label,label(jiR XFµ express the similarity
degree between both labels.

The previous equation is simplified when the
comparison is performed directly on a label
(label=labelX1 with XP1=1):

}),label({max
,...,2,1

iiR
i

FPlabelF$label) FEQ CDEG(F
FLEN

∗=
=

µ

 Similarly, the compatibility degree of a
comparison with a fuzzy attribute Type 4, F FEQ X,
is computed. Now,)label,label(jiR XFµ is 1 if

labelFi = labelXj, and 0 if labelFi ≠ labelXj.

Possibility Necessity Significance
FEQ or F= NFEQ or NF= Possibly/Necessarily Fuzzy Equal than…

FDIF , F!= or F<> NFDIF , NF!= or NF<> Possibly/Necessarily Fuzzy Different to…
FGT or F> NFGT or NF> Possibly/Necessarily Fuzzy Greater Than…

FGEQ or F>= NFGEQ or NF>= Possibly/Necessarily Fuzzy Greater or Equal than…
FLT or F< NFLT or NF< Possibly/Necessarily Fuzzy Less Than…

FLEQ or F<= NFLEQ or NF<= Possibly/Necessarily Fuzzy Less or Equal than…
MGT or F>> NMGT or NF>> Possibly/Necessarily Much Greater Than…
MLT or F<< NMLT or NF<< Possibly/Necessarily Much Less Than…

FINCL INCL Fuzzy Included in… / Included in…

Table 2: The 18 fuzzy comparators for FSQL (Fuzzy SQL):

16 in the Possibility/Necessity Family, and 2 in the Inclusion Family.

F_Comp Possibility operators
CDEG(A F_Comp B)=

Necessity operators
CDEG(A F_Comp B)=

FEQ
NFEQ

B(d))min(A(d), sup Ud∈= where U is the

domain of A and B. A(d) is the possibility
degree for d∈U in the distribution A.

B(d))A(d),-max(1 inf Ud∈= where U is the

domain of A and B. A(d) is the possibility
degree for d∈U in the distribution A

FDIF
NFDIF

= 1 − CDEG(A NFEQ B) = 1 − CDEG(A FEQ B)

FGT
NFGT

><

≥

=

otherwise 0

 & if
) - (-) - (

 -
 if 1

BA B A
A A B B

B A

B A

γδδγ
δγγδ

γδ
δγ

><

≥

=

otherwise 0

 & if
) - (-) - (

 -

 if 1

BA B A
A A B B

B A

B A

γβδα
βαγδ

γβ
δα

FGEQ
NFGEQ

><

≥

=

otherwise 0

 & if
) - (-) - (

 -
 if 1

BA B A
A A B B

B A

B A

αδβγ
δγαβ

αδ
βγ

><

≥

=

otherwise 0

 & if
) - (-) - (

 -
 if 1

BA B A
A A B B

B A

B A

αββα
βααβ

αβ
βα

FLT
NFLT

>

≤

=

otherwise 0

 & if
) - (-) - (

 -
 if 1

BA B A
A A B B

B A

B A

βααβ
αββα

βα
αβ

<>

≤

=

otherwise 0

 & if
) - (-) - (

 -
 if 1

BA B A
A A B B

B A

B A

βγαδ
γδβα

βγ
αδ

FLEQ
NFLEQ

<>

≤

=

otherwise 0

 & if
) - (-) - (

 -
 if 1

BA B A
B B A A

A B

B A

δαγβ
δγαβ

αδ
γβ

<>

≤

=

otherwise 0

 & if
) - (-) - (

 -
 if 1

BA B A
A A B B

B A

B A

δγγδ
γδδγ

δγ
γα

MGT
NMGT

+>+<
+

+≥

=

otherwise 0

M & M if
) - (-) - (

 -M
M if 1

BA B A
B B A A

A B

B A

γδδγ
δγαβ

δγ
δγ

+>+<
+

+≥

=

otherwise 0

M & M if
) - (-) - (

 -M

M if 1

BA B A
B B A A

A B

B A

γβδα
γδβα

βγ

δα

MLT
NMLT

−<−>
−

−≤

=

otherwise 0

M & M if
) - (-) - (

 -M
M if 1

BA B A
B B A A

A B

B A

βααβ
βααβ

αβ
αβ

−<−>
−

−≤

=

otherwise 0

M & M if
) - (-) - (

 -M
M if 1

BA B A
B B A A

A B

B A

βγαδ
βαγδ

γβ
αδ

M is the minimum distance to consider two attributes as very separate. M is defined in FMB for each attribute.
Table 3: Definition for the fuzzy comparators in the Possibility/Necessity Family,

using two trapezoidal possibility distributions : A and B (like Figure 1).

The “fuzzy different” comparator, FDIF, is
defined by denying the comparator FEQ:

CDEG(A FDIF B) = 1 − CDEG(A FEQ B)

3.3 Fulfillment Thresholds and Qualifiers

For each simple condition, a fulfillment threshold τ
may be established (default is 1) with the format:

<condition> THOLD τ
indicating that the condition must be satisfied with
minimum degree τ ∈ [0,1] to be considered. The
reserved word THOLD (threshold) is optional and
may be substituted by a traditional crisp comparator
(=, <, >=, ...), modifying the query meaning. The
word THOLD is equivalent to using the crisp
comparator >=.

In the new FSQL rather than a number, τ may be
a qualifier (defined in the FMB associated to each
attribute), i.e. an identifier or label that should be
defined in the FMB. Qualifiers are also preceded by
the symbol $.

Example: “Give me all persons with fair hair (in
minimum degree 0.5) that are possibly taller than
label $Tall (with a high degree)”:
 SELECT * FROM Person
 WHERE Hair FEQ $Fair THOLD 0.5 AND
 Height FGT $Tall THOLD $High;

This new FSQL admits thresholds in compound

conditions (with logical operators). In general, it is
preferable to use parentheses to clarify the influence
of the threshold. For example, (<condition1>
AND <condition2>) THOLD τ.

3.4 Function CDEG()and Logic Operators

The function CDEG (Compatibility Degree) may be
used with an attribute in the argument. Thus, it
computes the fulfillment degree of the condition of
the query, for the specific attribute.

We can use CDEG(*) to obtain the fulfillment
degree of each tuple (with all of its attributes, not just
one of them) in the condition.

If logic operators (NOT, AND, OR) appear in the
condition, the calculation of this compatibility degree
is carried out, by default, using the classic negation,
the minimum t-norm and the maximum s-norm
respectively. The user may change these default
values with the ALTER FSQL statement. In order to
change these functions dynamically for a specific
logic operation the FSQL user may use the following:

a) NOT (negation)
b) AND (t-norm)
c) OR (s-norm)

where negation, t-norm and s-norm are
alphanumeric values like, for example, “minimum”,
“product”, “drastic product”, “bounded product p”,
“Einstein product”, “Hamacher product p”, etc. for
t-norm, and “maximum”, “sum-product”, “drastic
sum”, “bounded sum p”, “Einstein sum”, etc. for s-
norm. It should be noted that for the sake of
simplicity, if the norm needs some argument p, it is
included after the name.

3.5 Fuzzy Set Operators

In SQL, you can combine multiple queries using the
set operators UNION, UNION ALL, INTERSECT,
and MINUS (or EXCEPT). In FSQL, if these queries
include some fuzzy degree associated to the whole
tuple (or row), you can use an extended version of
these set operators, which are listed and explained in
Table 4 together with the default values. This degree
is the fuzzy degree of a fuzzy entity or a fuzzy

relationship, or the compatibility degree, CDEG(*),
of a fuzzy subquery. We can change the default
functions of these fuzzy set operators, using the
ALTER FSQL statement. However, we can change
these functions dynamically for a specific operation:

a) FUNION (s-norm)
b) FINTERSECT (t-norm)
c) FMINUS (s-norm)

where t-norm and s-norm are alphanumeric
values just like we saw in Section 3.4.

3.6 Modifying FSQL Options

The ALTER FSQL and ALTER SESSION
statements specify or modify certain parameters that
affect the behavior of some aspects in FSQL
statements. ALTER FSQL affects all personal
connections to the database (definitively), whereas
ALTER SESSION only affects the current session
(or connection). Both statements have the same
syntax and the ALTER FSQL statement syntax is
represented in Figure 2. This statement has three
clauses.

LOGIC clause specifies the function to use (in the
CDEG function) when logic operators are used:

• Logic_Operator may be one of the
following words: {NOT, AND, OR, ALL}. The
word ALL refers to all the three basic logic
operators (NOT, AND, OR).

• Function_ts_norm is the function to use in
the previously specified logic operator.
Besides, the NOT function must only have
one argument and the AND/OR functions must
have two arguments, and they represent a
particular t-norm and s-norm, respectively. If
we use the word DEFAULT, then the
statement sets the default functions
(GREATEST function for the OR operator,
LEAST function for the AND operator, and
negation 1−X function for the NOT operator).

Operator Returns
FUNION All rows selected by either query (R or T).

If there are duplicated tuples (in R and T), it uses, by default, the
maximum s-norm: max (R.CDEGROW, T.CDEGROW)

FINTERSECT All rows selected by both queries (R and T).
If there are duplicated tuples (in R and T), it uses, by default, the
minimum t-norm: min (R.CDEGROW , T.CDEGROW)

FMINUS All distinct rows selected by the first query (R) but not the second (T).
If there are duplicated tuples (in R and T), it uses, by default, the
function: max (0, R.CDEGROW − T.CDEGROW)

Table 4: Fuzzy Set Operators in FSQL, applied to queries R and T.

ATTRIBUTE clause specifies what FSQL does
by default when it finds fuzzy attributes in unusual or
special positions. For example, imagine that a fuzzy
attribute appears in an ORDER BY clause, or like an
argument in a function (different than CDEG).

• Fuzzy_Type may be one of the following
words: {FTYPE2, FTYPE3, FTYPE4, ALL}.
The word ALL refers to all the three fuzzy
attributes Type 2, 3 and 4.

• Function_Fattribute is the function to use
when the previously specified fuzzy attribute
type appears in a special position. In addition,
we can use the following predefined options:
ERROR (FSQL gives an error), FTYPE
(FSQL uses the numeric type of the value in
that fuzzy attribute), and TO_CHAR (FSQL
uses the text which represents each value in
the fuzzy attribute and, for example, an
approximate value is represented with ‘7±2’).

FSET clause is useful for specifying the function
to use when fuzzy set operators are used:

• Logic_Set_Op may be one of the following
words: {FUNION, FINTERSECT, FMINUS,
ALL}. The word ALL refers to all the three
fuzzy set operators.

• Function_ts_norm is the function to use in
the previously specified fuzzy set operator. In
addition, this function must have two
arguments. If we use the word DEFAULT,
then the statement sets the default functions
(see Table 4).

Of course, all functions must be defined in the
DBMS, and the user must be permitted to execute it.

3.7 Some DDL Statements

The DDL (Data Definition Language) of FSQL
includes the modification of certain statements and
some new statements of three families: CREATE,

DROP and ALTER. These statements are applied to
the following objects of an FRDB.

Object TABLE: Fuzzy relations or fuzzy tables
(with or without fuzzy attributes). The group of
statements formed by CREATE TABLE, ALTER
TABLE and DROP TABLE already exists in SQL
standard. FSQL expands their syntax so that they
enable the fuzzy characteristics. For example FSQL
predefines some new datatypes: FTYPE1 or CRISP,
FTYPE2 or POSSIBILISTIC, FTYPE3 or
SCALAR, FTYPE4 or NONSIMILAR, FUZZY or
FUZZY DEGREE, fuzzy time datatypes
(FUZZY_DATE, FUZZY_TIME and
FUZZY_TIMESTAMP) and the associated degrees
(see Section 2.2). The user may create his/her own
fuzzy datatypes with the following object.

Object FDATATYPE: This object allows the
definition of specific fuzzy datatypes identified with
one name. These names may be used wherever a
fuzzy datatype may be used.

Object VIEW or MATERIALIZED VIEW
(SNAPSHOP): the statements CREATE, ALTER and
DROP, applied to these objects, already exist in SQL,
but in FSQL fuzzy queries are allowed with the
SELECT of FSQL.

Object LABEL: This object includes fuzzy labels
of attributes Types 1, 2 and 4. If it belongs to Type 1
or 2, then it is associated to one possibility
distribution. This object is exclusive of FSQL.

Object NEARNESS: This object represents the
similarity relationships of fuzzy attributes Type 3.
The CREATE NEARNESS statement implies the
definition of labels for fuzzy attributes Type 3 and the
similarity relation between them. This object is
exclusive of FSQL.

Object QUALIFIER: This object represents a
constant inside the context of the degrees of an
attribute (Section 3.3). This object is exclusive of
FSQL.

Object QUANTIFIER: This exclusive object of
FSQL represents fuzzy quantifiers inside the context
of attributes, tables or the system.

Figure 2: ALTER FSQL statement.

ALTER FSQL LOGIC Logic_Operator ; IS Function_ts_norm

FSETS Fuzzy_Set_Op ; IS Function_ts_norm

ATTRIBUTE Fuzzy_Type ; IS Function_Fattribute

Object MEANING: This object represents the
meanings or significances for some of the degrees
with which the FRDB works (Section 2.2). This
object is exclusive of FSQL.

3.8 Some Useful Functions

The new FSQL presented here includes the definition
of some useful functions. The more interesting
functions are the followings.

FDEGREE(attribute_list) returns the
fuzzy degree associated to the attribute or attributes
given in its arguments (see Type 5 and 6 in Section
2.2).

FDEGROW(table) returns the fuzzy degree
associated to the row, i.e. to the whole tuple (Type 7).
The argument of this function is the table name.

CARD(fuzzy_value) returns the cardinality
of a fuzzy value. For example, in order to know the
rows with less fuzziness in an attribute than a fuzzy
constant, a SELECT statement may include the next
condition: CARD(Quality) < CARD(3+-2). It
should be noted that CARD(X +- m) = m.

NORM(fuzzy_value) normalizes the fuzzy
value, dividing the original membership function by
the height of the fuzzy value.

CONC_DILAT (fuzzy_value, p) returns
the membership values raised to power p:

• If p > 1, it returns a concentrated version of
the fuzzy value. The membership function of
this version takes on relatively smaller
values. Usually, p = 2.

• If p ∈ (0,1), this function returns a dilated
version of the fuzzy value. The new
membership function takes on relatively
greater values. Usually, p = 0.5 (the square
root).

MORE_CONTRAST(fuzzy_value, p) is the
contrast intensification function and it returns the
fuzzy value with the most contrast. The membership
values lower than 0.5 are diminished while the grades
of membership above 0.5 are elevated. The operation
is defined by (usually p = 2):

MORE_CONTRAST(A, p)(x)=

 ≤

−−
=

−

−

otherwise
0.5)(if

))(1(21

)(2
1

1 x

x

x A

A

A
pp

pp

FUZZIFICATION(fuzzy_value, p) has a

complementary effect to that of intensification. The
operation is defined by (usually p = 2):

FUZZIFICATION(A, p)(x)=

 ≤

−−
=

otherwise
0.5)(if

2/))(1(1

2/)(x

x

x A

A

A
p

p

INTERSECTION(fuzzy_values,t) returns

the intersection of the fuzzy values, with the t-norm
indicated in the last argument.

UNION(fuzzy_values, s) returns the union
of the fuzzy values, with the indicated s-norm.

Functions CONC_DILAT, MORE_CONTRAST and
FUZZIFICATION are useful for implementing
linguistic hedges such as specially, very, slightly and
more or less.

3.9 Other Characteristics

The first definition of FSQL has some other
characteristics. For example, the wild card % or the
comparison with IS or IS NOT, followed by one
constant type: UNKNOWN, UNDEFINED or NULL.

However, the most important new characteristics
related to queries which are not defined in this paper
are:
• New syntax for quantified queries using fuzzy

quantifiers
• Fuzzy division queries.
• Fuzzy time, extending the comparators of

TSQL2 for fuzzy temporal querying.
These and others themes will be published in [5].

Table 5 summarizes the new fuzzy comparators for
fuzzy time in FSQL defining them using existing
fuzzy comparators (Table 2). We only study valid
time databases because transaction time databases
need the exact system time. However, valid time
databases need the time in which the fact was
considered to be true in the real world. Sometimes,
this time is not exactly known or it is a vague time
period.

In the same way as usual temporal RDB, valid
time relations have two additional attributes whose
data type is one of the previously defined fuzzy time
types: VST (Valid Start Time) and VET (Valid End
Time). These attributes in tuple t represent the fact
that its information is only valid in the real world
during the time period [t.VST, t.VET].

Note that TSQL2 only includes five comparators
(INCLUDES, INCLUDED_IN, OVERLAPS, BEFORE
and AFTER). FSQL extends these five comparators
with possibility and necessity versions (with prefixes
F_ and NF_ respectively). Besides, FSQL includes
totally new fuzzy comparators (XBEFORE, XAFTER,

MUCH_BEFORE and MUCH AFTER) also with
possibility and necessity versions (with prefixes F_
and NF_ respectively).

4 Conclusions

The FSQL language is an extension of the SQL
language which permits us to handle fuzzy
information in fuzzy or crisp databases. The first
version of FSQL was implemented for Oracle
databases [3][4]. Actually, the FuzzyEER model
[5][6][9] has been defined as an extension of the EER
model to create conceptual schemas with fuzzy
semantics and notations, and some FuzzyEER
concepts may be incorporated in FSQL, in order to
enrich it. Thus, we have included in this language
some tools, which become very useful.

These new definitions have not been implemented
still, and in the current DBMS some of them are not
easy. Let us hope the DBMS incorporate soon new
types of internal data, which allow storing fuzzy
values and fuzzy processing of these values. We think
that the FSQL definition will be a useful start point in
order to generalize the fuzzy databases in the real
database world.

References:
[1] Bosc P., Galibourg M, “Indexing principles for a

fuzzy data base”. Inf. Systems, Vol. 14-6, pp. 493-
499, 1989.

[2] Bosc P., Pivert O., “SQLf: A Relational Database
Language for Fuzzy Querying”. IEEE Transactions on
Fuzzy Systems, 3, pp. 1-17, 1995.

[3] Galindo J., Medina M., Pons O., Cubero J. C., “A
Server for Fuzzy SQL Queries”. In “Flexible Query
Answering Systems”. Lecture Notes in Artificial
Intelligence 1495, pp. 164-174. Ed. Springer, 1998.

[4] Galindo J., “Tratamiento de la Imprecisión en Bases
de Datos Relacionales: Extensión del Modelo y
Adaptación de los SGBD Actuales”. Ph. Doctoral
Thesis Universidad de Granada, Spain, 1999
(www.lcc.uma.es).

[5] Galindo J., Urrutia A., Piattini M., “Fuzzy Databases:
Modeling, Design and Implementation”. To publish by
Idea Group Publishing Hershey, USA, 2005.

[6] Galindo J., Urrutia A., Carrasco R.A., Piattini M.,
“Relaxing Constraints in Enhanced Entity-
Relationship Models using Fuzzy Quantifiers”. IEEE
Trans. on Fuzzy Systems 12-6, pp. 780-796, 2004.

[7] Medina J.M., Pons O., Vila M.A., “GEFRED. A
Generalized Model of Fuzzy Relational Data Bases”.
Information Sciences, 76(1-2), pp. 87-109, 1994.

[8] Petry F.E., “Fuzzy Databases: Principles and
Applications”. International Series in Intelligent
Technologies. Ed. H.J. Zimmermann. Kluwer
Academic Publ. (KAP), 1996.

[9] Urrutia A., Galindo J., Piattini M., “Modeling Data
Using Fuzzy Attributes”. Proc. IEEE Computer Soc.
Press XXII Int. Conf. of the Chilean Computer
Science Soc. (SCCC 2002), pp. 117-123. Chile, 2002.

Expression with Temporal Fuzzy Comparator Equivalence
[t.VST,t.VET] F_INCLUDES [T1,T2] T1 FGEQ t.VST AND T2 FLEQ t.VET
[t.VST,t.VET] F_INCLUDED_IN [T1,T2] T1 FLEQ t.VST AND T2 FGEQ t.VET
[t.VST,t.VET] F_OVERLAPS [T1,T2] T1 FLEQ t.VET AND T2 FGEQ t.VST
[t.VST,t.VET] F_BEFORE [T1,T2] T1 FGEQ t.VET
[t.VST,t.VET] F_AFTER [T1,T2] T2 FLEQ t.VST
[t.VST,t.VET] NF_INCLUDES [T1,T2] T1 NFGEQ t.VST AND T2 NFLEQ t.VET
[t.VST,t.VET] NF_INCLUDED_IN [T1,T2] T1 NFLEQ t.VST AND T2 NFGEQ t.VET
[t.VST,t.VET] NF_OVERLAPS [T1,T2] T1 NFLEQ t.VET AND T2 NFGEQ t.VST
[t.VST,t.VET] NF_BEFORE [T1,T2] T1 NFGEQ t.VET
[t.VST,t.VET] NF_AFTER [T1,T2] T2 NFLEQ t.VST

[t.VST,t.VET] F_XBEFORE [T1,T2] T1 FGT t.VET
[t.VST,t.VET] F_XAFTER [T1,T2] T2 FLT t.VST
[t.VST,t.VET] F_MUCH_BEFORE [T1,T2] T1 MGT t.VET
[t.VST,t.VET] F_MUCH_AFTER [T1,T2] T2 MLT t.VST
[t.VST,t.VET] NF_XBEFORE [T1,T2] T1 NFGT t.VET
[t.VST,t.VET] NF_XAFTER [T1,T2] T2 NFLT t.VST
[t.VST,t.VET] NF_MUCH_BEFORE [T1,T2] T1 NMGT t.VET
[t.VST,t.VET] NF_MUCH_AFTER [T1,T2] T2 NMLT t.VST

 Table 5: The 18 Fuzzy Comparators for Fuzzy Time in FSQL.
Extending 5 TSQL2 comparators and 8 new ones

(possibility and necessity versions): X means “eXclusively”.

