New Characteristicsin FSQL, a Fuzzy SQL for Fuzzy Databases

JOSE GALINDO
Dpto. Lenguajesy Ciencias de la Computacion,
University of Mélaga, Spain

Abstract: - The FSQL language is an extenson of the SQL language which permits us to handle fuzzy
information in fuzzy or crisp databases. The first version of FSQL was implemented for Oracle Databases in
PL/SQL. This first verson defined basic fuzzy (or flexible) queries for fuzzy or traditional databases. In this
work we present some new characteristics for FSQL. These new definitions include four new fuzzy
comparators, five new fuzzy attributes, six new fuzzy constant types, new characteristics in the fulfillment
thresholds, dynamic change of functions in logic operations, fuzzy set operators, the ALTER FSQL statement,
and some useful functions to handle fuzzy attributes and fuzzy vaues. Besides, we outline here the definition of
some DDL statements of FSQL and eighteen fuzzy comparators for fuzzy time in FSQL. The advantages of

these new characteristics are obvious bascdly they allow a greater expressiveness.

Key-Words: - Fuzzy relationa databases, Fuzzy SQL, FSQL, Fuzzy queries, Fuzzy comparators.

1 Introduction

At a theoretica level, there exists many Fuzzy
Relational Database (FRDB) models that, based on
the relational model, they extend it in order to alow
goring and/or treating vague and uncertan
information [1][8]. One of them, the GEFRED model
[4][7], is an eclectic synthesis of the different models.

On the other hand, the FSQL or Fuzzy SQL
language [3][4][5] is an extenson of the SQL
language which permits us to write flexible (or fuzzy)
conditions in our queries to a fuzzy or traditiond
database. This language dlows us to express
sentences taking into account the characteristics of
imprecise information; fuzzy conditions, fuzzy
values, computing fulfillment degrees, establishing
fulfillment thresholds...

The SQLf language [2] only study the SELECT
statement with fuzzy comparisons between crisp
values (columns) with linguistic labels and the use of
the “agpproximately equa” between crisp vaues (the
only fuzzy comparator included in SQLf). The best of
SQLf is the quantified statements (with fuzzy
quantifiers).

More recently, the FuzzyEER modd [5][6][9] has
been defined as an extension of the EER mode to
create conceptual schemas with fuzzy semantics and
notations. This extenson provides new and useful
definitions: fuzzy etributes, fuzzy entities, fuzzy
relationships, fuzzy specidizations... In this paper we
propose to incorporate some FuzzyEER cnceptsin
FSQL. Besides, we include in this language some
tools, which become very useful in some operations.

’ Partialy supported by MCY T project TIC2002-00480.

The next section defines the fuzzy attributes
included in the FuzzyEER model. After, we explain
some aspects about FSQL, emphasizing the new
characteristics.

2 Fuzzy Attributes

A fuzzy database needs a specia data dictionary in
order to store the information related to the inexact
nature or context of each fuzzy attribute. We cal it
the Fuzzy Metaknowledge Base (FMB).

In order to modd fuzzy attributes we distinguish
between two classes of fuzzy attributes. Fuzzy
atributes whose fuzzy values are fuzzy sets and
fuzzy attributes whose values are fuzzy degrees. Each
class includes some different fuzzy datatypes.

2.1 Fuzzy SetsasFuzzy Values

These fuzzy attributes may be classfied in four
datatypes. This classfication is performed taking into
account the type of referential or underlying domain.
In al of them the values Unknown, Undefined, and
Null are included:

- Type 1. These are attributes with “precise data”,
classic or crigp (traditional, with no imprecision).
However, we can define linguidtic labels in its
domain and we can use them in fuzzy queries.
This type is useful for extending traditiona
databases alowing fuzzy queries to be made
about classic data For example: “Give me

05IA fin I ‘FIA Oin EI'A é'n I ‘."In I 5ln

Figure 1. Trapezoidd possbility digributions: A, B.
employees that earn a lot more than the minimum
saary” (sdary must be awell known attribute).

- Type 2: These are attributes that gather
“imprecise data over an ordered referential”.
These attributes admit both crisp and fuzzy data,
in the form of possibility distributions over an
underlying ordered dominion (fuzzy sets). It is an
extension of the Type 1 that does, now, allow the
storage of imprecise information, such as. “he is
approximately 2 metres tal”. The most complex
of these fuzzy sets are the so-caled extended
trapezoidals. This novel type of fuzzy set is
composed by linear functions in some pieces. It
allows great flexibility (even for non-convex
sets). For the sske of simplicity the smple
trapezoidal functions (Figure 1) ae more
common. Note that this underlying domain is
continuous and ordered (usualy it will be the red
number dominion or the time).

- Type 3: They are attributes over “data of discreet
non-ordered dominion with analogy”. In these
attributes some labels are defined (eg. "blond",
"ginger", "brown", etc.) that are scaars with a
similarity (or proximity) relationship defined over
them, so0 that this relationship indicates to what
extent each pair of labels resemble each other.
They dso dlow posshility distributions (or fuzzy
sets) over this dominion, like for example, the
vaue { I/dark, 0.4/ginger}, which expresses that a
certain person is more likely to be dark than
ginger. Note that underlying domain of these
fuzzy sets are the set of labels and this set is
discreet and non-ordered.

- Type 4: These attributes are origind and they are
defined in the same way as Type 3 attributes,
without it being necessary for a similarity
relationship to exist between the labels.

2.2 Fuzzy Degreesas Fuzzy Values

The domain of these degrees can be found in the
interval [0,1], athough other vdues ae adso
permitted, such as a possbility distribution (usualy
over this unit interva). In order to keep it smple, we

will only use degreesin the interval [0,1], because the
other option offers no great advantages.

The meaning of these degrees is varied and
depends on their use. The processing of the data will
be different depending on the meaning. The most
important possible meanings of the degrees used by
some authors are [4][5]: Fulfilment degree,
Uncertainty degree, Possbility degree and
Importance degree. Of course, we can define and use
other meanings. In this paper we do not am to
demonstrate the usefulness of these degrees and their
different meanings. Severa authors who have used
these degrees have aready done so.

The ways of using these fuzzy degrees are
classfied in two familiess Associated and non-
associated degrees.

Associated degr ees are associated to a specific
vaue to which they incorporate imprecison. These
degrees may be associated to different concepts [5]:

Degree in each value of an attribute (we
will cal it as Type 5): Some attributes may
have a fuzzy degree associated to them. This
implies that each value of this attribute (in
every tuple or instance) has an associated
degree, measuring the level of fuzziness in
that value. In order to interpret it, we need to
know the meaning of the degree and the
meaning of the associated attribute.

Degree in a set of values of different
attributes (Type 6): Here, the degree is
associated to some attributes. It joins the
fuzziness of some attributes in only one
degree.

Degree in the whole instance of the
relation (Type 7): This degree is associated
to the whole tuple of the relation and not
exclusively to the value of a specific attribute
of the tuple (or instance). Usudly, it can
represent something like the “membership
degree” of this tuple (or instance) to the
relation (or table) of the database. This
degree represents the fuzzy degree of a fuzzy
relation (for example, a fuzzy entity in the
FuzzyEER moddl).

Non-associated degrees (Type 8): There are
cases in which the imprecise information, which we
wish to express, can be represented by using only the
degree, without associating this degree to another
specific value or vaues. For example, the
dangerousness of a medicine may be expressed by a
fuzzy degree.

The first verson of FSQL only includes the fuzzy
atributes Type 1, 2 and 3.

Fuzzy Constant Significance Storein | Usein
UNKNOWN Unknown value but the attribute is applicable. 2,34 2,34
UNDEFI NED The atribute is not applicable or it is meaningless. 2,34 2,34
NULL Tota ignorance: we know nothing about it. All All
$[a, b, gd Fuzzy trepezoid with a £b £ g£ d (Figure 1). 2 1,2
$[a, b, gd, Extended fuzzy trapezoid (with some points Pi / Ni 2 1,2
P1/ N1, .., Pn/ Nn] | wheredl theNi are between a and b or between gand d).
Vauesb and gare both optional. If they do not exist, then
this congtant is a fuzzy value without kerndl.
[n, n Interval “Between n and ni . 2 1,2
n+-m Fuzzy value “Approximady n”: trianglen +m 2 1,2
#n Fuzzy vaue“Approximately n”: trianglen + margin, 2 1,2
where margin is stored in the FMB for each attribute.
$l abel Linguistic Labd: it may be atrapezoid or a scalar (defined 2,34 11,234
in FMB).
{P1/L1, P2/L2, | Non-continuous posshility distribution on labels, where 3,4 3,4
.. Pn/Ln} P1,P2, ..., Pn are the possibility valuesand L1, L2, ...,
Ln arethelabels.
{L1, L2,.., Ln} | Non-continuous posshility distribution on labels, where 3,4 3,4
L1,L2,..., Ln aethelabes, with possbility degrees 1
fordl of them: {1/ L1, ..., 1/Ln}.
{P1/ N1, P2/ N2, | Non-continuous posshility distribution on numbers, 2 1,2
... Pn/ Nn} where P1, P2, ..., Pn are the possibility values and N1,
N2, ..., Nn are the numbers.
{N1, N2, .., Nn} | Non-continuous posshbility distribution on numbers, 2 1,2
where N1, N2, ..., Nn are the numbers, with possibility 1
fordlof them: {1/ N1, ..., 1/ Nn}.

Table 1. Fuzzy constantsthat may be used in FSQL statements and

the fuzzy datatypes which can store and use them.

3 Some Aspectsof FSQL Language

The FSQL language extends SQL in order to handle
fuzzy information and to express fuzzy sentences.
The main extensions in FSQL are the followings. We
will expose them indicating the new characteristics,
which we present in this paper, and the old
characteristics.

3.1 Fuzzy Congants

In FSQL, we can use the fuzzy constants as detailed
and explained in Table 1. If an attribute is capable of
fuzzy treatment then linguistic labels can be defined
on it. These labels will be preceded with the symbol
$ to distinguish them easily. Labels for attributes
with an ordered underlined fuzzy domain (Type 1 and
2) have an associated possibility digtribution (usualy
with atrapezoidd form like Figure 1).

It should be noted that the non-continuous
possibility digtributions (the last four constant types
in Table 1) are aso digunctive vaues. The new

constants in FSQL are these four types, the extended
trapezoid and the explicit approximate value (n+-),
which is represented with a triangular function
centered in n and with base equa to 2m The previous
definition of FSQL included the implicit approximate
vaue (#n) where the only possble margin is the
vaue stored in the FMB.

Besides, Table 1shows the fuzzy datatypes that
can store and use these fuzzy constants (in queries,
fuzzy conditions, etc.). Some implementations may
limit the number of elements in the stored non-
continuous possihility didributions or in the
extended trapezoid.

3.2 Fuzzy Comparators

In addition to the typica comparators (=, >, >=...),
FSQL includes the eighteen fuzzy comparators in
Table 2. The firg verson of FSQL only included
fourteen. Asin SQL, fuzzy comparators compare one
column with one constant or two columns of the same

(or compatible) type.

Possibilit Necessit Significance
FEQ or F= NFEQ or NF= Possibly/Necessarily Fuzzy Equal than...
FDI F, F! = or F<> | NFDI F, NF! = or NF<> | Possibly/Necessarily Fuzzy Different to...
FGT or F> NFGT or NF> Possibly/Necessarily Fuzzy Greater Than...
FGEQ or F>= NFGEQ or NF>= Possibly/Necessarily Fuzzy Greater or Equal than...
FLT or F< NFLT or NF< Possibly/Necessarily Fuzzy Less Than...
FLEQ or F<= NFLEQ or NF<= Possibly/Necessarily Fuzzy Less or Equal than...
MGT or F>> NMGT or NF>> Possibly/Necessarily Much Greater Than...
MLT or F<< NMLT or NF<< Possibly/Necessarily Much Less Than...
FI NCL | | NCL | Fuzzy Included in... / Included in...

Table 2: The 18 fuzzy comparatorsfor FSQL (Fuzzy SQL):
16 in the Possibility/Necessity Family, and 2 in the Inclusion Family.

As possibility comparators are more general (less
restrictive) than necessity comparators, necessity
comparators retrieve fewer tuples, and these tuples
necessarily comply with the conditions (whereas with
posshility comparators, the tuples only possbly
comply with the condition, without any absolute
certainty). Table 3 shows the definition for al the
fuzzy comparators in the Possibility/Necessity family
for fuzzy attributes Type 1 and 2, with respect to
trapezoida functions (Figure 1).

In attributes with a non-ordered underlying
doman (Fuzzy Type 3 or 4) only the fuzzy
comparators FEQ, FDI F, | NCL and FI NCL can be
used, since they lack order.

Comparator | NC and FINCL do not use
possibility and necessity measures, and | NCL is more
restrictive than FI NCL (I NCL retrieves less rows
than FI NCL). Comparator | NC examines if one
fuzzy vaue is included in other, returning a crisp
value of the tri-valued logic:

INULL if AorBare NULL
A INCL B={TRUE if A(X)£B(X)," x
{FALSE otherwise

FI NCL defines a degree of subsethood. This
degree is computed by
CDEG(A FINCL B) = Card (A) - Card (A B)

Card (A)
where Card is the cardinality of the membership
function. The intersection of A and B may use the
minimum tnorm. Thus, if CDEG(A FINCL B) =
1, this means that A is totdly included in B. In the
other extreme, if CDEG(A FI NCL B) =0, then this
means that A isnot includedin B at dl.

Operator NOT can precede to every condition. The
fuzzy comparator of “inequality” or “possbly
different” may be modeled denying (with NOT) a
comparison with FEQ or NFEQ, wusing the following
format: NOT A FEQ B. However, this method

obtains different results to when FDI F and NFDI F
are used, because the NFDI F comparator must be
more redtrictive than FDI F. Then, by definition
NFDI F denies the comparison with FEQ, and FDI F
denies the comparison with NFEQ.

Furthermore, the behavior of the NOT operator
may be changed (see Section 3.4 and 3.6).

In order to define the comparators FEQFDI F for
Fuzzy Attributes Type 3 and 4, let us suppose that we

want to compare two possibility digributions, F and
X, on the linguigtic labels of a fuzzy attribute Type 3:
F FEQ X, where

F={FR/labeF} with i=12..LEN

X={XP /labelX;} with j=12..,LEN
labelF;, and labelX; being linguistic labels, which
belong to the same attribute and therefore they can be
compared with its similarity relation. The values FP;
and XP, ae the posshility degrees in [01],
associated to these labels respectively. LEN- and
LENy indicate the number of pairs {degree/label} of
the posshility digributions F and X, respectively,
with LEN:3 1and LENy3 1

The compatibility degree of F and X is
subsequently computed by:

CDEG(F FEQ X) :izlm%&{rrh(labelﬁ,labelxj)*FR*XPJ-}
where m(labelF,,labelX;) express the smilarity
degree between both labels.

The previous equation is smplified when the
comparison is peformed directly on a labe
(I abel =labelX; with XP;=1):

CDEQ(F FEQ $l abel)=i:lg?.ﬂ>§,*{”h(|abd':n| abel)* FP}

Smilaly, the compatibility degree of a
comparison with a fuzzy attribute Type 4, F FEQ X,
is computed. Now, my(labelF ,labelX;) is 1 if

labelF; = labelX;, and O if [abelF; * labelX.

Possibility operators

CDEG(A F Comp B) =

Necessity operators
CDEG(A F Comp B) =

EIE(E? =sup,, min(A(d), B(d)) where U isthe =inf, , max(1-A(d),B(d)) WhereU isthe
Q domain of A and B. A(d) isthe possibility domain of A and B. A(d) isthe possibility
degreefor di U in thedistribution A. degreefor di U in thedistribution A
FDIF = 1- CDEG(A NFEQ B) = 1- CDEG(A FEQ B)
NFDI F
FGT i1 ifgas de i1 ifaadde
NFGT i) i
Sl datOs o cde&da>ge =l bAGe irn,<degbasgs
i (de-gs)-(ga-da) i(de-ge)-(@n-ba)
to otherwise fo otherwise
FGEQ i1 ifgad be i1 ifaadbs
NFGEQ i) i)
::’$ing<bB&dA>aB :}$ifaA<bB&bA>aB
j(be-as)-(ga-da) :,:(bs—a B)-(@a-ba)
fo otherwise to otherwise
FLT i1 if bafa s i1 ifdafas
NFLT Ji aa-bs { ga-bs
= - if ba>as&aab =i ifda>as&ga<be
.:.(aB_bB)_(bA_aA)' Azae&anle {(@s-bs)-[da-ga)
fo otherwise to otherwise
FLEQ i1 if ba£gs i1 ifasrfge
NFLEQ i) i)
:}LifbA>gB&aA<dB =:'gA—dBifdA>gB&gA<dB
'|'(bA-aA)-(gB-dB) i (gB-dB)-(dA-gA)
fo otherwise fo otherwise
MGT i1 if gasds+M i1 ifandde+M
NMGT i) I -
=%wing<dB+M&dA>gB+M =:’LMbAifa A<de+M&ba>gs+M
j(ba-as)-(ge-de) j@a-ba)-(de-gs)
fo otherwise fo otherwise
M.T i1 ifbafas- M i1 if dafas- M
NMLT 1 M- 1 M-
=%MifbA>aB-M&aA<bB-M =}MifdA>aB-M&gA<bB-M
i(ba-an)-(as-bs) ida-ga)-(as-be)
fo otherwise fo otherwise

M is the minimum distance to consider two attributes as very separate. M is defined in FMB for each attribute.
Table 3: Definition for the fuzzy comparatorsin the Possibility/Necessity Family,
using two trapezoidal possibility distributions: Aand B (like Figure 1).

The *“fuzzy different” comparator, FDI F, is
defined by denying the comparator FEQ
CDEG A FDIF B) = 1- CDEG A FEQ B)

3.3 Fulfillment Thresholds and Qualifiers

For each smple condition, a fulfillment threshold t

may be established (default is 1) with the format:
<condi tion> THOLD t

indicating that the condition must be satisfied with

minimum degree t T [0,1] to be considered. The

reserved word THOLD (threshold) is optional and
may be substituted by a traditiona crisp comparator

(=, <, >=, ..), modifying the query meaning. The
word THOLD is equivdent to using the crisp
comparator >=.

In the new FSQL rather than anumber, t may be
a qualifier (defined in the FMB associated to each
dtribute), i.e. an identifier or label that should be
defined in the FMB. Qudifiers are also preceded by

the symbol $.

Example: “Give me al persons with fair har (in

minimum degree 0.5) that are possibly taller than

label $Tal | (with ahigh degree)”:

SELECT * FROM Per son

VWHERE Hair FEQ $Fair THOLD 0.5 AND
Hei ght FGT $Tall THOLD $Hi gh;

This new FSQL admits thresholds in compound
conditions (with logica operators). In generd, it is
preferable to use parentheses to clarify the influence
of the threshold. For example, (<conditionl>
AND <condi tion2>) THOLD t.

Oper ator Returns

FUNI ON

All rows selected by either query (Ror T).
If there are duplicated tuples (in Rand T), it uses, by default, the
maximum s-norm: max (R. CDEGROW T. CDEGROW)

FI NTERSECT

All rows selected by both queries (Rand T).
If there are duplicated tuples (in Rand T), it uses, by default, the
minimum t-norm: min (R. CDEGROW, T. CDEGROW

FM NUS

All distinct rows selected by the first query (R) but not the second (T).
If there are duplicated tuples (in Rand T), it uses, by default, the

function: max (0, R. CDEGROW - T. CDEGROW

Table 4: Fuzzy Set Operatorsin FSQL, applied to queriesRand T.

3.4 Function CDEE) and Logic Operators

The function CDEG (Compatibility Degree) may be
used with an attribute in the argument. Thus, it
computes the fulfillment degree of the condition of
the query, for the specific attribute.

We can use CDEQ *) to obtain the fulfillment
degree of each tuple (with all of its attributes, not just
one of them) in the condition.

If logic operators (NOT, AND, OR) appear in the
condition, the calculation of this compatibility degree
is carried out, by default, using the classic negation,
the minimum t-norm and the maximum s-norm
respectively. The user may change these default
valueswiththe ALTER FSQL statement. In order to
change these functions dynamicaly for a specific
logic operation the FSQL user may use the following:

a NOT (negation)

b) AND (t-norm

c) OR (s-norm
where negation, t-norm and s-norm are
aphanumeric vaues like, for example, “minimum’”,
“product”, “drastic product”, “bounded product p”,
“Eingtein product”, “Hamacher product p”, etc. for
t-norm and “maximum”, “sum-product”, “dragtic
sum”, “bounded sum p”, “Einstein sum”, etc. for s-
norm It should be noted that for the sake of
smplicity, if the norm needs some argument p, it is
included after the name.

3.5 Fuzzy Set Operators

In SQL, you can combine multiple queries using the
set operators UNI ON, UNI ON ALL, | NTERSECT,
and M NUS (or EXCEPT). In FSQL, if these queries
include some fuzzy degree associated to the whole
tuple (or row), you can use an extended version of
these set operators, which are listed and explained in
Table 4 together with the default values. This degree
is the fuzzy degree of a fuzzy entity or a fuzzy

relaionship, or the compatibility degree, CDEQE *) ,
of a fuzzy subquery. We can change the default
functions of these fuzzy set operators, using the
ALTER FSQL statement. However, we can change
these functions dynamically for a specific operation:

a FUNION (s-norm

b) FI NTERSECT (t-norm

c) FM NUS (s-norm
where t-norm and s-norm are aphanumeric
valuesjust like we saw in Section 3.4.

3.6 Modifying FSQL Options

The ALTER FSQ and ALTER SESSI ON
statements specify or modify certain parameters that
affect the behavior of some aspects in FSQL
statements. ALTER FSQL affects all persona
connections to the database (definitively), whereas
ALTER SESSI ON only affects the current session
(or connection). Both statements have the same
syntax and he ALTER FSQL statement syntax is
represented in Figure 2. This statement has three
clauses.
LOA C clause specifies the function to use (in the
CDEG function) when logic operators are used:
Logic Operator may be one of the
following words: {NOT, AND, OR, ALL}. The
word ALL refers to all the three basic logic
operators (NOT, AND, OR).
Function_ts norm is the function to use in
the previoudy specified logic operator.
Besides, the NOT function must only have
one argument and the AND/OR functions must
have two arguments, and they represent a
particular tnorm and snorm, respectively. If
we use the word DEFAULT, then the
statement sets the default functions
(GREATEST function for the OR operator,
LEAST function for the AND operator, and
negation 1- X function for the NOT operator).

9| ALTER FSQL

>| LOG C

9[Logic_Operator

—>| IS %[Function_ts_norm

SN ATTRI BUTE 9[Fuzzy Type

el IS e[Function_Fattribute

FSETS

\

Fuzzy Set Op

500

el IS e[Function_ts norm

Figure 2: ALTER FSQL statement.

ATTRI BUTE clause specifies what FSQL does
by default when it finds fuzzy attributes in unusual or
gpecia postions. For example, imagine that a fuzzy
atribute appears in an ORDER BY dause, or like an
argument in afunction (different than CDEG).

Fuzzy Type may be one of the following
words: { FTYPE2, FTYPE3, FTYPE4,ALL}.
The word ALL refers to al the three fuzzy
atributes Type 2, 3 and 4.
Function_Fattribute is the function to use
when the previoudy specified fuzzy attribute
type appears in a specia position. In addition,
we can use the following predefined options:
ERROR (FSQL gives an eror), FTYPE
(FSQL uses the numeric type of the value in
that fuzzy attribute), and TO_CHAR (FSQL
uses the text which represents each value in
the fuzzy attribute and, for example, an
approximate value is represented with ‘ 7+2').

FSET clause is useful for specifying the function
to use when fuzzy set operators are used:

- Logic_Set_Op may be one of the following

words: {FUNI ON, FI NTERSECT, FM NUS,
ALL}. Theword ALL refersto al the three
fuzzy set operators.
Function_ts norm is the function to use in
the previoudy specified fuzzy set operator. In
addition, this function must have two
arguments. If we use the word DEFAULT,
then the statement sets the default functions
(see Table 4).

Of course, dl functions must be defined in the
DBMS, and the user must be permitted to execute it.
3.7 SomeDDL Statements
The DDL (Data Definition Language) of FSQL

includes the modification of certain statements and
some new statements of three familiess CREATE,

DROP and ALTER. These statements are applied to
the following objects of an FRDB.

Object TABLE: Fuzzy relations or fuzzy tables
(with or without fuzzy dtributes). The group of
statements formed by CREATE TABLE, ALTER
TABLE and DROP TABLE dready exists in SQL
standard. FSQL expands their syntax so that they
enable the fuzzy characteristics. For example FSQL
predefines some new datatypes. FTYPEL or CRI SP,
FTYPE2 or POSSIBILISTIC, FTYPE3 or
SCALAR, FTYPE4 or NONSI M LAR, FUZZY or
FUZZY DECREE, fuzzy time datatypes
(FUZZY_DATE, FUZZY_TI MVE and
FUZZY_TI MESTAMP) and the associated degrees
(see Section 2.2). The user may create his’her own
fuzzy datatypes with the following object.

Object FDATATYPE: This object dlows the
definition of specific fuzzy datatypes identified with
one name. These names may be used wherever a
fuzzy datatype may be used.

Object VI EW or MATERI ALI ZED VI EW
(SNAPSHOP): the statements CREATE, ALTER and
DROP, applied to these objects, aready exist in SQL,
but in FSQL fuzzy queries are dlowed with the
SELECT of FSQL.

Object LABEL: This object includes fuzzy labels
of attributes Types 1, 2 and 4. If it belongs to Type 1
or 2, then it is associated to one posshbility
distribution. This object is exclusive of FSQL.

Object NEARNESS: This object represents the
smilarity relationships of fuzzy attributes Type 3.
The CREATE NEARNESS statement implies the
definition of labels for fuzzy attributes Type 3 and the
smilarity relation between them. This object is
exclusive of FSQL.

Object QUALI FI ER: This object represents a
constant inside the context of the degrees of an
atribute (Section 3.3). This object is exclusve of
FSQL.

Object QUANTI FI ER: This exclusive object of
FSQL represents fuzzy quantifiers inside the context
of attributes, tables or the system.

Object MEANI NG This object represents the
meanings or significances for some of the degrees
with which the FRDB works (Section 2.2). This
object is exclusive of FSQL.

3.8 Some Useful Functions

The new FSQL presented here includes the definition
of some useful functions. The more interesting
functions are the followings.

FDECREE(attri bute_|ist) retuns the
fuzzy degree associated to the attribute or attributes
given in its arguments (see Type 5 and 6 in Section
2.2).

FDEGROWt abl e) returns the fuzzy degree
associated to the row, i.e. to the whole tuple (Type 7).
The argument of this function is the table name.

CARD(fuzzy_val ue) returns the cardinaity
of a fuzzy vaue. For example, in order to know the
rows with less fuzziness in an attribute than a fuzzy
constant, a SELECT statement may include the next
condition: CARD(Qual ity) < CARD(3+-2).It
should be noted that CARD(X +- m) = m

NORM fuzzy_val ue) normdizes the fuzzy
vaue, dividing the origind membership function by
the height of the fuzzy value.

CONC DI LAT (fuzzy_val ue,
the membership values raised to power p:

- If p > 1, it returns a concentrated version of
the fuzzy value. The membership function of
this verson takes on reaively smdler
vaues. Usudly, p =2
If p T (0,1), this function returns a dilated
verson of the fuzzy value. The new
membership function takes on reativey
greater values. Usualy, p = 0.5 (the square
root).

MORE_CONTRAST(fuzzy_val ue, p) isthe
contrast intensification function and it returns the
fuzzy value with the most contrast. The membership
values lower than 0.5 are diminished while the grades
of membership above 0.5 are elevated. The operation
isdefined by (usudly p = 2):

p) returns

MORE_CONTRAST(A, p) ()=
_izp‘lAp(x) if A(X) £ 0.5
%1- 2P 1(1- A(x))? othewise
FUZZI FI CATI ON(fuzzy_val ue, p) hasa

complementary effect to that of intensification. The
operation is defined by (usudly p = 2):

FUZZI FI CATI ON(A, p) ()=
_jR/Ax) /2 if A(X)£0.5
%1_ pf@- A(x))/2 Otherwise

| NTERSECTI ON(f uzzy_val ues, t) returns
the intersection of the fuzzy values, with the tnorm
indicated in the last argument.

UNI ON(fuzzy_ val ues, s) returnstheunion
of the fuzzy vaues, with the indicated s-norm.

FunctionsCONC_DI LAT, MORE_CONTRAST and
FUZZI FI CATI ON ae useful for implementing
linguistic hedges such as specially, very, dightly and
more or less.

3.9 Othe Characteristics

The first definition of FSQL has some other
characterigtics. For example, the wild card %or the
comparison with I S or I S NOT, followed by one
constant type: UNKNOWN, UNDEFI NED or NULL.

However, the most important new characteristics
related to queries which are not defined in this paper
are:

New syntax for quantified queries using fuzzy
quantifiers

Fuzzy divison queries.

Fuzzy time, extending the comparators of
TSQL2 for fuzzy tempora querying.

These and others themes will be published in [5].
Table 5 summarizes the new fuzzy comparators for
fuzzy time in FSQL defining them using exigting
fuzzy comparators (Table 2). We only study valid
time databases because transaction time databases
need the exact system time. However, vdid time
databases need the time in which the fact was
considered to be true in the real world. Sometimes,
this time is not exactly known or it is a vague time
period.

In the same way as usual tempora RDB, valid
time relations have two additional attributes whose
data type is one of the previoudy defined fuzzy time
types: VST (Vaid Start Time) and VET (Valid End
Time). These attributes in tuple t represent the fact
that its information is only vaid in the red world
during thetimeperiod [t . VST, t. VET].

Note that TSQL2 only includes five comparators
(I NCLUDES, | NCLUDED _I N, OVERLAPS, BEFCRE
and AFTER). FSQL extends these five comparators
with possibility and necessity versions (with prefixes
F_and NF_ respectively). Besides, FSQL includes
totally new fuzzy comparators (XBEFORE, XAFTER,

Expression with Temporal Fuzzy Compar ator Equivalence

[t.VST,t.VET]
[t.VST,t.VET]
[t.VST,t.VET]
[t.VST,t.VET]
[t.VST,t.VET]

F_I NCLUDES [T1, T2]
F_INCLUDED I N [T1, T2]
F_OVERLAPS [T1, T2]
F_BEFORE [T1, T2]
F_AFTER [T1, T2]

T1 FGEQ t. VST AND T2 FLEQ t.VET
T1 FLEQ t. VST AND T2 FGEQ t.VET
T1 FLEQ t.VET AND T2 FGEQ t. VST
T1 FGEQ t. VET
T2 FLEQ t. VST

[t.VST,t.VET]
[t.VST,t.VET]
[t.VST,t.VET]
[t.VST,t.VET]
[t.VST,t.VET]

NF_| NCLUDES [T1, T2]
NF_| NCLUDED I N [T1, T2]
NF_OVERLAPS [T1, T2]
NF_BEFORE [T1, T2]
NF_AFTER [T1, T2]

T1 NFGEQ t. VST AND T2 NFLEQ t. VET
T1 NFLEQ t. VST AND T2 NFGEQ t. VET
T1 NFLEQ t. VET AND T2 NFGEQ t. VST
T1 NFGEQ t. VET
T2 NFLEQ t. VST

[t.VST,t.VET] F_XBEFORE [T1, T2] T1 FGT t.VET
[t.VST,t.VET] F_XAFTER [T1, T2] T2 FLT t.VST
[t.VST, t.VET] F_MJUCH BEFORE [T1, T2] T1 MGT t.VET
[t.VST,t.VET] F MUCH AFTER [T1, T2] T2 MLT t.VST
[t.VST,t.VET] NF_XBEFORE [T1, T2] T1 NFGT t.VET
[t.VST,t.VET] NF_XAFTER [T1, T2] T2 NFLT t.VST
[t.VST, t.VET] NF_MJUCH BEFORE [T1, T2] T1 NMGT t.VET
[t.VST,t.VET] NF_MUCH AFTER [T1, T2] T2 NMLT t.VST

Table 5: The 18 Fuzzy Comparatorsfor Fuzzy Timein FSQL.
Extending 5 TSQL 2 comparators and 8 new ones
(possibility and necessity versions): X means “eXclusively”.

MUCH BEFORE and MUCH AFTER) dso with
possibility and necessity versions (with prefixes F_
and NF__ respectively).

4 Conclusions

The FSQL language is an extension of the SQL
language which permits us to handle fuzzy
information in fuzzy or crisp databases. The first
verson of FSQL was implemented for Oracle
databases [3][4]. Actudly, the FuzzyEER modd
[5][6][9] has been defined as an extension of the EER
model to create conceptual schemas with fuzzy
semantics and notations, and some FuzzyEER
concepts may be incorporated in FSQL, in order to
enrich it. Thus, we have included in this language
some tools, which become very useful.

These new definitions have not been implemented
gill, and in the current DBMS some of them are not
easy. Let us hope the DBMS incorporate soon new
types of internal data, which alow storing fuzzy
values and fuzzy processing of these values. We think
that the FSQL definition will be auseful start point in
order to generaize the fuzzy databases in the red
database world.

References:

[1] Bosc P., Galibourg M, “Indexing principles for a
fuzzy data base’. Inf. Systems, Vol. 14-6, pp. 493-
499, 1989.

[2] Bosc P, Pivert O., “SQLf: A Relational Database
Language for Fuzzy Querying”. |[EEE Transactions on
Fuzzy Systems, 3, pp. 1-17, 1995.

[3] Galindo J., Medina M., Pons O., Cubero J. C., “A
Server for Fuzzy ®)L Queries’. In “Flexible Query
Answering Systems’. Lecture Notes in Artificial
Intelligence 1495, pp. 164-174. Ed. Springer, 1998.

[4] Galindo J., “Tratamiento de la Imprecision en Bases
de Datos Relacionales: Extension del Modelo y
Adaptacion de los SGBD Actuales’. Ph. Doctord
Thesis Universidad de Granada, Spain, 1999
(Www.lcc.uma.es).

[5] Galindo J, Urrutia A., Piattini M., “Fuzzy Databases:
Modeling, Design and Implementation”. To publish by
Idea Group Publishing Hershey, USA, 2005.

[6] Galindo J., Urrutia A., Carrasco R.A., Piatini M.,
“Relaxing Constraints in Enhanced Entity-
Relationship Models using Fuzzy Quantifiers’. |IEEE
Trans. on Fuzzy Systems 12-6, pp. 780-796, 2004.

[7] Medina JM., Pons O., Vila M.A., “GEFRED. A
Generalized Model of Fuzzy Relational Data Bases'.
Information Sciences, 76(1-2), pp. 87-109, 1994.

[8] Petry F.E., *“Fuzzy Databases. Principles and
Applications’. International Series in Intelligent
Technologies. Ed. H.J. Zimmermann. Kluwer
Academic Publ. (KAP), 1996.

[9] Urrutia A., Galindo J., Piattini M., “Modeling Data
Using Fuzzy Attributes’. Proc. IEEE Computer Soc.
Press XXII Int. Conf. of the Chilean Computer
Science Soc. (SCCC 2002), pp. 117-123. Chile, 2002.

