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Abstract: - The role and properties of the division operator are well known in the framework of queries
addressed to regular relational databases. However, Boolean queries may turn out to be too restrictive to answer
some user needs and it is desirable to consider extended queries by introducing preferences inside selection
conditions. In this paper, the extension of the division operator is investigated in the context of graded relations,
i.e., whose tuples are weighted. Several interpretations of the division are possible and they mainly depend on
the roles of the grades attached to tuples of input relations. Their properties are examined in the perspective of a
characterization of the result obtained as a quotient, similarly to that obtained for integers.
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1   Introduction
The database domain is an important field of research
and development and many works aim at enriching
database management systems (DBMSs) capabilities.
The research reported in this paper is intended for
allowing the expression of flexible queries, i.e.,
where preferences intervene in selection conditions
instead of Boolean ones. This view is illustrated by
the query: "find the affordable restaurants located
close to the seashore". In such a situation,
discrimination among restaurants has to take into
account both the price of the menu(s) and the location
of the restaurants (and optionally levels of importance
attached to these criteria).
     Several works devoted to the expression and the
interpretation of fuzzy queries in the relational
framework [4] have been undertaken (in particular [1,
7, 9]). Selection, projection, Cartesian product, join
as well as set-oriented operations have been studied
in order to take into account levels of preference. On
the contrary, the division operation has not been so
much investigated [2, 3, 5, 6, 8, 10, 11] and different
extensions have been proposed with various
motivations and contexts, in particular depending on
the nature of the relations involved and the meaning
of degrees associated with tuples.
     In the remainder of this paper, the division of
fuzzy relations is investigated. The principal
objective is to discuss the properties of the result
delivered by a division operation. Indeed, this result
depends on the approach adopted for the extension of
the division as it is mentioned in the works reported
in [2, 3, 6]. We would like to determine if the result
obtained is a quotient in the sense of the properties
which hold when the division of two integers is

performed (which turn out to hold with the division
of regular relations). The key point behind this is of a
semantic nature, because a negative answer would
mean that the term division is inappropriate.
 The paper is organized as follows. In section 2, the
definition of the division of regular relations is
recalled as well as the two characteristic properties of
a quotient. The principle for adapting the division to
fuzzy relations, which relies on the notion of a degree
of inclusion (instead of a usual Boolean inclusion)  is
described in section 3. The next three sections are
devoted to the study of the properties of the result of
the division of fuzzy relations according to various
approaches of extension. Section 7 concludes the
paper. The major results obtained are recalled and
some perspectives for future works are outlined.

2   Some Reminders about the Division
The relational division, i.e., the division of relation r
whose schema is R(A, X) by relation s whose schema
is S(B) where A et B are compatible sets of attributes
(i.e., defined on the same domains of values) is
defined as:

     div(r, s, {A}, {B}) = {x | (x ∈ domain(X)) ∧
                                               (s ⊆ Kr(x))    (1)

where Kr(x) = {a | <a, x> ∈ r}. In other words, an
element x belongs to the result of the division of r by
s if and only if it is associated in r with at least all the
values a appearing in s. The justification of the term
"division" assigned to this operation relies on the fact
that a property similar to that of the quotient of
integers holds. Indeed, the resulting relation t



obtained with this definition has the double
characteristic of a quotient, namely:

     prod(t, s) ⊆ r                                             (2a)

     ∀t1, (t1 ⊃ t) ⇒ (prod(t1, s) � r)                  (2b)

with prod(t, s) denoting the Cartesian product of
relations t and s.

Proof. Case 1. Neither the result of the division, nor
the divisor relation is empty. Let x be an element of t
and a be an element of s. Let us suppose that <x, a>
does not belong to r, then x would not be associated
with all the values of s and it would not be in the
result of the division of r by s, hence inclusion (2a)

holds. Now, let us consider relation t1 = t ∪ {y} (y ∉
t). The Cartesian product of t1 and s contains a tuple
<y, b> which does not belong to r, otherwise y would
be associated with any value a of s and it would have
been in t. It follows that property (2b) holds.

     Case 2. The result of the division is empty but the
divisor is not empty. Property (2a) holds since the
Cartesian product of t and s is empty and then
included in any relation. No element x is associated
with all the elements of s and if y is added to t,
property (2b) does not hold since the Cartesian
product of {y} with s involves elements which are
not in r.

     Case 3. The divisor s is empty. The solution
returned by (1) is the (possibly infinite) set of the
values in the domain of X. Properties (2a) and (2b)
are both satisfied since the Cartesian product of t and

s is empty and t cannot be augmented.•

Remark. When the divisor is empty, the theoretical
solution of the division is the entire domain of X. In
practice, such a solution cannot be computed since
the domains of the attributes are not represented (and
are thus unknown) in database systems. To overcome
this problem, a solution is to adapt the definition of
the division by constraining the possible elements of
the result to belong to the dividend relation. So, the
practical computation of the result can be performed
even if the divisor is empty and the definition of the
division becomes:

     div(r, s, {A}, {B}) = {x | (x ∈ proj(r, X)) ∧
                                               (s ⊆ Kr(x))     (3)

where proj(r, X) stands for the projection of relation r
over attribute X defined as:

     proj(r, X) = {x | ∃t ∧ (t ∈ r) ∧ (t.X = x)}   (4).

The characterization of a quotient is changed into:

     ∀x, (x ∈ t) ⇒ (prod({x}, s)) ⊆ r) (5a)
     ∀t1, (t1 = t ∪ {x}) ∧ (x ∈ proj(r, X)) ⇒
                                         (prod({x}, s) 

⊈
 r))        (5b).

Expressions (5a) and (5b) express the fact that the
relation (t) resulting from the division is a quotient,
i.e., the largest relation over X whose Cartesian
product with the divisor returns a result smaller than
or equal to the dividend (according to regular set
inclusion).

Example 1. Let us take a database involving the two
relations order (o) and product (p) with respective
schemas O(#p, store, qty) and P(#p, price). Tuples
<n, s, q> of o and <n, pr> of p state that the product
whose number is n has been ordered to store s in
quantity q and that its price is pr. The query aiming at
retrieving the stores which have been ordered all the
products priced under $127 in a quantity greater than
35, can be expressed thanks to a division as:

     div(o-g35, p-u127, {#p}, {#p})

where relation o-g35 corresponds to pairs (n, s) such
that product n has been ordered to store s in a
quantity over 35 and relation p-u127 gathers products
whose price is under $127. From the following
extensions of relations o and p:

    o #p store qty         p #p price

15 32 50 15 102

12 32 68 4 200

34 32 49 12 87

26 32 78 26 59

26 7 120 78 345

78 7 30 34 258

12 7 96

the relations o-g35 and p-u127 obtained are:

       o-g35 np store      p-u127 np

15 32 15

12 32 12

34 32 26

26 32

26 7

12 7

whose division using formula (3) leads to a result
made of the single element {32}. It can easily be
checked that this result satisfies expressions (2a) and

(2b), or alternatively (5a) and (5b).♦



3   Principle for Adapting the Division

to Fuzzy Relations
2.1   Fuzzy queries and relations
The context considered now is that of flexible queries
where conditions call on preferences instead of
Boolean criteria. The answer to such a query is made
of a set of elements rank-ordered according to their
accordance with the preferences. From now on,
predicates of flexible queries are assumed to be
modeled by fuzzy sets [1] and fuzzy relations are
used instead of regular ones.
     Formally, a fuzzy relation is defined as a fuzzy
subset of the Cartesian product of domains of values.
Hence, a fuzzy relation r whose schema is R(A, B, C)

is made of a set of weighted triples denoted by µr

(t)/t, where t = <a, b, c> and µr (t) stands for the
membership degree of t in relation r, i.e., its
compatibility with the fuzzy concept associated with
this relation. It is worth noticing that a regular
relation is just a special case of a fuzzy relation where
the degree attached to every tuple equals 1.

3.2   Principle for the extended division
     By analogy with a query calling on a division such
as that of example 1, one may envisage the query
aiming at the determination of the extent to which any
store has been ordered all the fairly cheap products in
a high quantity, which is expressed thanks to a
division of fuzzy relations, namely:

     div(hq-o, fcp-p, {np}, {np})

where the degree attached to any tuple of hq-o (resp.
fcp-p) expresses the compatibility of the quantity
(resp. price) with high (resp. fairly cheap).
     The extension of the division to fuzzy relations is
based on the adaptation of formula (3) where on the
one hand the regular implication is replaced by a
fuzzy one (i.e., an application from [0, 1]2 to [0, 1]),

denoted by ⇒f, and the universal quantifier is
interpreted by the infimum, on the other hand, the
restriction of the calculus to the values present in the
dividend accounts for the fact that the divisor is a
fuzzy relation. This leads to:

     ∀x ∈ proj(supp(r, X)), µdiv(r, s, {A}, {B}) (x) =

     d = deg(s ⊆ Kr(x))      (6)

where supp(r) denotes the support of the fuzzy

relation r, i.e., the regular relation {t | µr (t) > 0},
proj(supp(r, X)) represents the domain of X restricted
to those values appearing in the dividend (r), Kr(x) is
defined as:

     Kr(x) = {µ/a | µ/<x, a> ∈ r},

and deg(E ⊆ F) denotes the degree of inclusion of E
in F. Several types of degrees of inclusion exist
depending on the approach adopted. The logical one
is based on:

     E ⊆ F ⇔ ∀x ∈ X, (x ∈ E) ⇒ (x ∈ F)              (7)

which leads to:

     deg(E ⊆ F) = infx µE (x) ⇒f µF (x)       (8)

where ⇒f is a fuzzy implication. Another one is
founded on cardinalities of fuzzy sets, namely:

     E ⊆ F ⇔ card(E ∩ F) = card(E)                       (9)

which leads to a degree of inclusion expressing a
ratio of cardinalities:

     deg(E ⊆ F) = card((E ∩ F) / card(E)     (10).

A third one stems from the equivalence:

     E ⊆ F ⇔ ((E − F) = ∅) (11)

which gives birth to:

     deg(E ⊆ F) = 1 – h(E – F) (12)

where h(E) denotes the height of the fuzzy set E, i.e.,
the highest degree of its elements.
     In the next sections, the properties of the result of
extended division is studied with respect to the
satisfaction of properties (5a) and (5b).

4  Using R-implications for the

Division of Fuzzy Relations
4.1   Some reminders on R-implications

An R-implication, denoted by ⇒R-i, is defined as:

     p ⇒R-i q = sup [0, 1] {u | �(p, u) ≤ q}               (13)

where �(a, b) stands for a triangular norm (operator
associative, commutative, monotonic, whose neutral
element is 1) extending the conjunction, or also:

     
otherwiseq)f(p,

qpif1
qp iR

≤
=⇒ −

where f(p, q) expresses a partial satisfaction (a value
less than 1) when the threshold p is not reached by
the conclusion part q. The minimal element of R-
implications, called Gödel implication, is obtained by



choosing �(a, b) = min(a, b) in formula (13). It is
defined as:

     p ⇒Gö q = 
otherwiseq

qpif1 ≤

Other representatives of R-implications are Goguen
implication:

     p ⇒Gg q = 
otherwiseq/p

qpif1 ≤

obtained with �(a, b) = a × b, and Lukasiewicz
implication:

     p ⇒Lu q = 
otherwiseqp1

qpif1

+−
≤

obtained with �(a, b) = max(a + b – 1, 0).

4.2 R-implication and division of fuzzy

relations
Combining expression (6) and the choice of an R-
implication in expression (8), the following definition
of the division of fuzzy relations is obtained:

     ∀x ∈ proj(supp(r, X)), µdiv(r, s, {A}, {B}) (x) =

     d = infs (µs (a) ⇒R-i µr (a, x))                   (14).

Assessing the fact that the result is a quotient entails
an adaptation of the double characterization conveyed
by formulas (5a) and (5b) in order to take into
account that the relations are fuzzy, which yields:

     ∀x, (x ∈ proj(supp(r), {X}) ∧ µt (x) = d))  ⇒

                     (prod({d/<x>}, s)) ⊆ r                  (15a)

     ∀x, (x ∈ proj(supp(r), {X}) ∧ µt (x) = d) ⇒

                  (∀d1 > d, prod({d1/<x>}, s) 
⊈
 r)     (15b).

It is also necessary to specify the Cartesian product of
fuzzy relations as well as the inclusion used in the
previous two expressions. In the usual case, the
Cartesian product of r and s is defined as:

     r × s = {uv | (u ∈ r) and (v ∈ s)},

which can be extended to two fuzzy relations r and s
as follows:

     µr × s (uv) = � (µr (u), µs (v)).

The inclusion is extended in a straightforward manner
to fuzzy relations by:

     r ⊆ s ⇔ ∀x ∈ X, µr (x) ≤ µs (x))}.

As the inequality �(p, (p ⇒R-i q)) ≤ q holds, if one
uses the norm which generates the R-implication in
the Cartesian product, the following inclusion holds:

     prod(div(r, s, {A}, {B}), s) ⊆ r.

Moreover, let x be an element of the result t of the
division and let b be the value of s for which:

     µt (x) = infs µs (a) ⇒R-i µr (a, x)

               = (µs (b) ⇒R-i µr (b, x)).

Then, the degree of <x, b> in (t × s) is:

�(µt (x), µs (b)) = �((µs (b) ⇒R-i µr (b, x)),

                          (µs (b))

                               ≤ µr (b, x).

But it is known that:

     ∀u, (u > µt (x)) ⇒ (� (u, µs (b)) > µr (b, x)),

from which it can be deduced that the degree
assigned to x is maximal and property (15b) holds.
     Finally, it appears that the division of fuzzy
relations based on R-implications delivers a quotient
provided that the Cartesian product used for the
characterization makes use of the norm which serves
for generating the R-implication.

Example 2. Let us consider the two following fuzzy
relations r and s whose respective schemas are R(A,
X) and S(B):

          r A X µµµµ           s B µµµµ

a1 x 0.7 a1 0.8

a2 x 0.4 a2 0.5

a3 x 1 a3 0.3

a1 y 1

a2 y 0.6

a3 y 0.2

The result t of the division of r and s is successively
computed with different R-implications in expression
(14), using the previous extensions of the relations.
With Gödel implication, the result t is:

     µt (x) = inf(0.8 ⇒Gö 0.7, 0.5 ⇒Gö 0.4, 0.3 ⇒Gö 1)
 =  inf(0.7, 0.4, 1) = 0.4,

     µt (y) = inf(0.8 ⇒Gö 1, 0.5 ⇒Gö 0.6,

                          0.3 ⇒Gö 0.2)



  =  inf(1, 1, 0.2) = 0.2.

When performing the Cartesian product of t and s
with the norm "minimum", one gets the relation:

{0.4/<a1, x>, 0.4/<a2, x>, 0.3/<a3, x>,
  0.2/<a1, y>, 0.2/<a2, y>, 0.2/<a3, y>}

which is strictly included in r (formula (15a) holds).
It is easy to check that formula (15b) holds as well,
because of the presence of the tuples <a2, x> and
<a3, y> whose grades equal those of r.
     Similarly, with Goguen implication, the result of
the division of r by s is:

     µt (x) = min(0.8 ⇒Gg 0.7, 0.5 ⇒Gg 0.4, 0.3 ⇒Gg 1)
               =  min(7/8, 4/5, 1) = 0.8,

     µt (y) = min(0.8 ⇒Gg 1, 0.5 ⇒Gg 0.6, 0.3 ⇒Gg 0.2)
               =  min(1, 1, 2/3) = 2/3.

The Cartesian product (using the norm "product") of t
with the divisor s delivers the relation:

{0.64/<a1, x>, 0.4/<a2, x>, 0.24/<a3, x>,
         (1.6/3)/<a1, y>, (1/3)/<a2, y>, 0.2/<a3, y>}

here again included in the dividend r. Moreover, it
involves the tuples <a2, x> and <a3, y> with the same
degree as in r, which guarantees that formula (15b) is

satisfied.♦

5  Using S-implications for the

Division of Fuzzy Relations
5.1   Some reminders on S-implications

An S-implication, denoted by ⇒S-i, is defined from a
triangular co-norm � (operator associative,
commutative, monotonic, whose neutral element is 0)
extending the disjunction by:

     p ⇒S-i q =  � (1 – p, q)               (16).

There is an infinity of such implications and the most
common representatives of this family are Kleene-
Dienes implication:

     p ⇒K−D q =  max(1 – p, q)

obtained with �(a, b) = max(a, b) in (16),
Reichenbach implication:

     p ⇒Rb q =  1 – p + pq

obtained with �(a, b) = a + b – ab, and Lukasiewicz
implication:

     p ⇒Lu q =  min(1, 1 – p + q)

obtained with �(a, b) = min(1, a + b).

5.2   S-implication and division
By analogy with formula (14), the definition of the
division of fuzzy relations using an S-implication is
defined as:

          ∀x ∈ proj(supp(r, X)), µdiv(r, s, {A}, {B}) (x) =

     d = infs (µs (a) ⇒S-i µr (a, x))                   (17).

The question is to decide whether the result obtained
can be characterized as a quotient in general. In
others words, it is necessary to identify a norm
associated with the Cartesian product in expressions
(15a) and (15b) so that they hold. In this paper, we
limit ourselves to prove that this is not feasible for the
divisions based on Kleene-Dienes implication (which
is the minimal S-implication), Reichenbach
implication and the maximal S-implication using
counter-examples. Of course, Lukasiewicz
implication which is both an S-implication and an R-
implication is compatible with the satisfaction of
properties conveyed by expressions (15a) and (15b)
provided that the norm:

     �(a, b) = max(a + b – 1, 0)

is used for the Cartesian product.
     Let us consider the relations:

    r A X µµµµ     s B µµµµ

a1 x 1 a1 1

a2 x 0.8 a2 0.5

The result t of the division of r by s with expression
(17) using Kleene-Dienes implication is:

     µt (x) = inf(1 ⇒K-D 1, 0.5 ⇒K-D 0.8)
               = inf(1, 0.8)
               = 0.8.

The Cartesian product of t and s with the largest norm
(the minimum) returns:

     {0.8/<a1, x>, 0.5/<a2, x>}.

However, this relation is not maximal since the
product of {0.9/<x>} and s which is:

     {0.9/<a1, x>, 0.5/<a2, x>},

is also included in r. It can thus be deduced that in
general the division using Kleene-Dienes implication
does not deliver a quotient since expression (15b)
does not hold.



     Similarly, the result t of the division of r by s with
expression (17) using Reichenbach implication is:

     µt (x) = inf(1 ⇒Rb 1, 0.5 ⇒Rb 0.8)
               = inf(1, 0.9) = 0.9.

The Cartesian product of t and s with the largest norm
(the minimum) returns:

     {0.9/<a1, x>, 0.5/<a2, x>}.

However, this relation is not maximal since the
product of {0.95/<x>} and s which is:

     {0.95/<a1, x>, 0.5/<a2, x>},

is also included in r. It can thus be deduced that in
general the division using Reichenbach implication
does not deliver a quotient since expression (15b)
does not hold.
     Let us now consider the largest co-norm, known
as Weber co-norm, defined as:

     �W(a, b) = 

otherwise1

0aifb

0bifa

=
=

its associated norm:

     �W(a, b) = 

otherwise0

1aifb

1bifa

=
=

its associated S-implication:

     p ⇒W q = 

otherwise1

1pifq

0qifp1

=
=−

and the relations:

           r A X µµµµ            s B µµµµ

a1 x 1 a1 1

a2 x 0.2 a2 0.4

The result t of the division of r by s with expression
(17) using the previous implication is:

     µt (x) = inf(1 ⇒W 1, 0.4 ⇒W 0.2) = inf(1, 1) = 1.

The Cartesian product of t and s with the smallest
norm (�W above) returns the relation: {1/<a1, x>,
0.4/<a2, x>}, which is not included in the dividend r
and expression (15a) does not hold.

5.3  Difference and S-implication based

division
If expression (12) is used for defining an extended
division, one has the following definition of the
division of fuzzy relations:

          ∀x ∈ proj(supp(r, X)), µdiv(r, s, {A}, {B}) (x) =
     d = 1 – h(s – Kr(x))                                  (18).

If the following definition of the difference is taken:

     µE – F (x) = �(µE (x), 1 – µF (x)),

we get:

     d = 1 – h(s – Kr(x))

        = 1 – sups �(µs (a), 1 – µKr (x) (a))

         = 1 – sups �(µs (a), 1 – µr (a, x))

         = infs 1 – �(µs (a), 1 – µr (a, x))

         = infs �(1 – µs (a), µr (a, x))

         = infs (µs (a) ⇒S-i µr (a, x)).

So, it turns out that the approach for the division of
fuzzy relations based on the difference of fuzzy sets
is not original since it is already captured by the
logical view using S-implications.

6 Using a Degree of Inclusion Based
on cardinalities for the Division of

Fuzzy Relations
If formula (10) is used as the basis for extending the
division, the definition hereafter is obtained:

      µdiv(r, s, {A}, {B}) (x) = card(s ∩ Kr (x)) / card(s)

= Σs �(µs (a), µr (a, x)) / Σs µs (a)                (19).

Here again, the result obtained is not a quotient. The
reason lies in the fact that expression (15a) does not
hold. This is illustrated by the following example
where the smallest Cartesian product of the smallest
result of the division and the divisor turns out to
exceed the dividend.

Example 4. Let us consider the extensions:

           r A X µµµµ           s B µµµµ

a1 x 0.4 a1 1

a2 x 1 a2 1

a3 x 1 a3 1

Using Weber norm in expression (19), the division of
r by s yields:



t = ((� W(0.4, 1) + � W(1, 1) + � W(1, 1))/
              (1 + 1 + 1))/x

         = (2.4/3)/x = 0.8/x.

The Cartesian product of t with s based on Weber
norm as well returns the relation:

     {0.8/<a1, x>, 0.8/<a2, x>, 0.8/<a3, x>}

which is not included in the dividend r.

7   Conclusion
The topic of this paper is the extension of the division
to fuzzy relations. The key point dealt with concerns
the properties of the result delivered by different
approaches to the extended division. More precisely,
we are interested in assessing whether the result is a
quotient or not, i.e., the largest fuzzy relation which,
once composed with the divisor, does not exceed the
dividend. Such a property is a characteristic of the
result of the division of integers and justifies the
appropriateness of the term division.
     Starting with the definition of the division of
regular relations which calls on an inclusion, three
main lines of extension are envisaged depending on
the replacement of the inclusion by a degree of
inclusion based on: i) an R-implication, ii) an S-
implication or iii) a ratio of cardinalities. It turns out
that the only sound extension is the one based on R-
implications which delivers a quotient. None of the
most used S-implications (except Lukasiewicz
implication which is both an R and an S-implication)
is satisfactory, nor the approach founded on the use
of a degree of inclusion expressing a ratio of
cardinalities, whatever the norm used to compute the
ratio.
     This work opens a number of perspectives. In
particular, it would be interesting to have a better
characterization of the status of S-implications. One
may conjecture that none of them is acceptable
except for those which are also R-implications (e.g.,
Lukasiewicz).
     The division considered so far can be called a non
fuzzy one since only the operand relations are fuzzy.
An orthogonal approach for extending the division
would be to soften the universal quantifier so as to
define a truly fuzzy division based on the fuzzy
linguistic quantifier "almost all". The question would
then be to determine under which assumptions the
result returned by such an approximate division is a
quotient.
     The same type of question would arise if the
operand are no longer relations, but multi-relations,
or even fuzzy multi-relations.
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