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Abstract: - The design of microwave systems requires accurate modeling of the behavior of active components
such as MOSFETs, MODFETs, MESFETs, and HEMTs. This aspect is crucial when the design process leads to
massive and highly repetitive computational tasks during simulation, optimization and statistical analysis. In
this paper, we present a robust approach that combines the capabilities of neural networks and fuzzy theory to
automatically predict the most reliable equivalent circuit model of microwave field effect transistors.
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1   Introduction
The rapid growth of today's microwave systems
requires a continuous upgrading of existing models
at the component level, taking into account
emerging technologies and new applications.
Widely used in the microwave area, field effect
transistor (FET) gained a particular attention during
the last decades. The most efficient approach is to
model it as an equivalent electrical circuit which
element values can be determined either by direct
extraction [1] or by optimization-based extraction
[2]. Fast and simple to implement, direct-extraction
techniques provide adequate values for the more
dominant circuit model elements but they cannot
determine all the extrinsic elements uniquely [3]. On
the other hand, optimization-based extraction
techniques are more accurate but computationally
intensive and sensitive to the choice of starting
values [4]. Though several optimization-based
extraction methods that are insensitive to starting
values have recently been proposed, it is still
difficult to determine all the model elements with a
high degree of certainty. This is especially true for
the extrinsic elements due to the small influence
they have on the measured data and thus on the
optimization process, making traditional optimizers
to be numerically ill conditioned.

Furthermore, in order to make them attractive to
non-experienced users, such techniques often
assume a prior transistor circuit topology [5].
Considering the very large panel of FETs available
on the market based on the fabrication process and
final usage, this topology, referred in this paper as
the standard topology (Fig. 1), cannot be suitable,
especially when massive and highly repetitive
computational tasks are required during design.

Fig. 1. FET standard topology.

Therefore, the aim of this paper is to present a
robust approach that combines the capabilities of
neural networks and fuzzy theory to automatically
predict the most reliable circuit model of microwave
FETs. Since the equivalent circuit of a FET is often
specific to a given type of transistor and it is
puzzling to decide which one is most suitable to be
used in one specific application, we created a library
of the most often used topologies, displayed in Fig.
2 to 5 [6]-[9].

Neural modeling is one of the most recent trends
in microwave CAD. Fast, accurate and reliable
neural network models can be trained from
measured or simulated data. Once developed, these
neural models can be used in place of CPU-intensive
models to speed up design [10].

Fuzzy neural networks have been recently
recognized as a useful vehicle for efficient modeling
and design [11]. By combining the Fuzzy c-means
method (FCM) [12] and the neural representation of
a transistor behavior [13], the small-signal
equivalent circuit parameters are efficiently
evaluated through a fuzzy-neural network, based on
an optimum selection of the more appropriate circuit
topology of the active device.
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Fig. 2. Circuit topology # 1 as reported in [6].

Fig. 3. Circuit topology # 2 as reported in [7].

Fig. 4. Circuit topology # 3 as reported in [8].

Fig. 5. Circuit topology # 4 as reported in [9].

2   Fuzzy-Neural Approach
The first step of the proposed method is a direct
parameter extraction of the standard FET topology
using the classical method described in [1]. The S-
parameters (Sij

s
, i, j = 1, 2) of the standard topology

are then compared to the measured input parameters

(denoted as Sij
m

, i, j = 1, 2), as shown in Fig. 6. If the
achieved accuracy is not acceptable, a new circuit
topology should be selecting from the FET library.

FCM is a data clustering technique wherein each
data point belongs to a cluster to some degree that is
specified by a membership grade [14]. Clustering in
N unlabeled data X = {xi, i = 1, …, N} is the
assignment of c number of partition labels to the
vectors in X. The problem of fuzzy clustering is to
find the optimum matrix U = [Uij ∈ [0, 1], i = 1, ..., c;
j = 1, ..., N] which minimize the function [14]
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where h is an exponent that controls the degree of
fuzziness, uik describes the belongness of xi to
cluster k,
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and vi is the centroid of ith cluster,

( )

( )∑

∑

=

== N

k

h
ik

N

k
k

h
ik

i

u

xu
v

1

1 (3)

Fig. 6. Algorithm of the proposed method.
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In this work, FCM would be an efficient tool to
identify the optimum topology based on the
following approach: For any circuit # k (k = 1, …, 4),
the related Sk matrix would be compared to the input
Sm matrix and each element of the two resulting 2x2
error matrices Ek, Re and Ek, Im,

( )mkRek
ijijij SSE −= Re,     i, j = 1, 2 (4)

( )mkImk
ijijij SSE −= Im,  i, j = 1, 2 (5)

would receive a score scaled from 1 to 10 depending
on its value. Thus, topology #k with smallest E k, m,
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i.e., smallest score, would be selected as the most
adequate circuit. In the above equation, Re(*) and
Im(*) denote the real part and the imaginary part
respectively. However, this approach is not
practical. In fact, since there is no prior knowledge
on the input parameters, it is impossible to compute
numerically (6). Let {Ωs} be the set of Ps elements

s
pΩ (p = 1, …, Ps)  in the standard topology. A

symbolic code was developed using [15] to
analytically derive the following nonlinear functions

{ }( )kskk Ω= ,ijijij SfS     i, j = 1, 2     k = 1, …, 4 (7)

where {Ωk} is the set of the Pk elements added in
circuit #k in comparison with the standard topology,
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in order to evaluate the alternative fuzzy criteria
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The above relations depend only on the values of
the Pk elements of set {Ωk}. However, relations (8)
are strongly interdependent, highly nonlinear, multi-
dimensional, and require a huge combination of
values to be accurately evaluated. Therefore, we
used neural networks to learn these quantities. A
neural network (NN) is a model that has the ability

to learn and generalize arbitrary continuous multi-
dimensional nonlinear input-output relationships.
Let x be an n-vector {xi, i = 1, …, n} containing the
inputs and y be an m-vector {yk, k = 1, …, m}
containing the outputs from the output neurons. The
original problem can be expressed as y = f (x), while
the neural network model for the problem is

( )wxyy ,NN
~=  ,            (9)

where w is a Nw-vector {wi, i = 1, …, Nw} containing
all the weight parameters representing the
connections in the NN. The definition of w and the
way in which yNN is computed from x and w
determines the structure of the NN. The most
commonly used NN configuration is the Multi Layer
Perceptrons (MLP) where the neurons are grouped
into layers as shown in Fig. 7.
The layer L1 is the input layer. The layers L2 to LL-1
are called hidden layers, while the last layer LL, the
output layer, contains the response to be modeled.
The various layers are placed end to end with neuron
connections between them. For such a neural
network, the function given by (9) is calculated on
the basis of the layer of entry while using [10]

ii xz =1 ,    i = 1, …, N1,     n = N1             (10)

zi
1 is the output of the ith neuron of the input layer,

and while proceeding layer by layer, the output at
the end of layer Ll is given by
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where j = 1, …, Nl, and l = 1, …, L, to reach the
output layer that gives

L
kk zy =  ,     k = 1, …, NL,   m = NL                    (12)

In these relations, Nl is the number of neurons in
the layer Ll, wjk represents the weight of the
connection between the kth neuron of the layer Ll-1
and the jth neuron of the layer Ll.

Fig. 7. Structure of the MLP neural network.
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In (11), the function σ is known as the activation
function of the neuron. By allocating values to the
standard Ss parameters and varying the value of each
element k

pΩ  (p = 1, …, Pk) of set {Ωk}, we utilized
(7) to compute the Sk parameters and therefore, the
difference {Sk - Ss}. The resulting data in the form of
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was submitted to a three-layer (MLP3) neural
network structure for training using the
Neuromodeler tool [16] as shown in Fig. 8.

Fig. 8. Neural network model for circuit #k.

The input layer has 9 neurons (the 4 real and 4
imaginary parts in (8) and the operating frequency f)
while the output layer contains Pk neurons. The
hidden layer is composed of 22 to 45 neurons
depending on the circuit data file under training.

It has to be noted that once the inputs and
outputs are identified, three sets of data namely, the
training data, the validation data, and the test data,
need to be generated for the neural network
development. Training data is used to guide the
training process, i.e., to update the neural network
weights during training. Validation data is used to
monitor the quality of the neural model during
training. Test data is used to examine the final
quality of the developed model.

Suppose the range of input parameters over
which the neural model would be used is [xmin, xmax].

Therefore, validation data, test data, and training
data should be generated in the same range as well,
selecting a sampling strategy and an adequate step
size. Grid, star, central-composite, or random
distributions are possible.

Prior to further discussion, two points had to be
considered in this work. First, the input parameter
space is of high-dimension and the step sizes should
be small enough to assure good convergence. This
will lead to a too large number of combinations of
input parameters. Second, even after selecting the
optimum topology, the values of the elements of set
{Ωs} obtained after the first round of extraction, i.e.,
using the standard topology need to be tuned in the
final circuit along with the neural outputs, i.e., the
elements of set {Ωk}. An optimization loop is then
essential. Therefore, instead of generating large data
files required for a classical neural development, we
used the values of the following vector

[ ]sskk
sk PP ΩΩΩΩ=Ω ,,,,, 11 KK            (14)

as starting vector for the optimization loop. This
procedure will assure better and faster convergence.

3   Validation
The device to be characterized is the one reported in
[17] using topology # 3. Since in this paper all
circuit element values are given as well as the final
error between measured and simulated S-parameters,
a reliable comparison can be performed for a full
validation. In fact, by comparing the S-parameters
(Fig. 9) and the element values (Table I) in [17] with
those obtained in 2.3 seconds using our technique,
circuit # 3 achieved a quite close agreement as
expected, with a smaller final error.
The second device to be characterized is FET
EPA018A. After 2.1 seconds, our method showed
that circuit #2 is the most appropriate (Fig. 10) with
an acceptable final error of 1.8%, smaller than the
user specifications, i.e., 2%.

4   Conclusion
In this paper, a combined fuzzy-neural tool has been
used for determining the optimum small-signal FET
equivalent circuit topology. The method has been
proven to be fast and accurate and can be applied to
other RF/microwave active devices such as HBTs.
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Fig. 9. Comparison of measured S-parameters (♦)
with those extracted using different topologies:
---- : standard topology,   __ __  : topology # 1,

o : topology # 2, ____  : topology # 3, * : topology # 4.
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Table I. Comparison between the parameters
reported in [17] and our results for example 1.

Circuit # 3 Our Values
Cgs (pF) 0.277 0.215
Cgd (pF) 0.0207 0.0211
Cds (pF) 0.0993 0.101
gm (mS) 26.9 27.3
τ (ps) 1.22 1.25
Ri (Ω) 15.3 15.1
Rgd (Ω) 43.8 43.6
Rds (Ω) 215 218
Rg (Ω) 8.9 9.1
Rs (Ω) 7.5 7.3
Rd (Ω) 13.6 13.2
Ls (nH) 0.437 0.441
Ld (nH) 0.452 0.447
Lg (nH) 0.254 0.258
Cgsp  (pF) 0.0409 0.0397
Cgdp  (pF) 0.001 0.001
Error (%) 8.4 2.9
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