
Component Integration for Web Based Applications

RICHARD A. WASNIOWSKI
Computer Science Department

California State University Dominguez Hills
Carson, CA 90747, USA

Abstract

Abstract: - We describe a component-based infrastructure for Web-based applications that reduces the need for
custom integration. We assume that to construct an application, users will give a specification of three kinds of
components: data source, business analysis, and visualization unit. From this specification, our infrastructure will
generate the desired application. To support this vision, the infrastructure contains an intelligent component
integration system that automates component retrieval, adaptation, and integration.

Key-Words: - Component, Integration, Web Based Applications

1 Introduction
The types of problems that web application
developers are solving today require the use of a
diverse set of tools that operate in many domains.
There is obviously a subtle distinction between a
web application and a web site. For the purpose
of this paper a web application uses a web site as
the front end to a more complex application.
In order to provide flexible tool integration
platform for component integration must allow
tool developers to target different levels of
integration based on the desired level of problem
complexity, time/space limitations and specific
tool needed. The Unified Modeling Language
emerged in response to a need for today’s
interactive computing systems and that can guide
in constructing them. In the UML framework,
software design entails building an object-
oriented representation of a system, as well as of
its environment, e.g. its users. Interactive systems
such as modeled with UML represent a new
paradigm in computation that inherently cannot
be modeled using traditional, or algorithmic,
tools. The essence of this computing paradigm is
the notion that a system’s job is not to transform

input to an output, but rather to provide service.
When a system is viewed as a service provider,
the interaction between the system and its
environment becomes an integral part of the
computing process. UML presents a uniform
domain-independent framework for modeling the
different interactions present in today’s systems:
interactions among objects or software
components, interactions between users and
applications, interactions over networks and
multilevel integration of various components.
Each integration level determines what end users
can expect as a result. This paper analyzes the
different levels of tool integration and gives an
overview of how they work. Numerous software
toolkits and libraries are available to support the
construction of web applications [7,17,19,20].
However, due to differences in data formats and
system implementation styles, using these
systems often requires additional custom
programming that is time-consuming, expensive
and usually not reusable. Web application
software is commonly developed from prototype
systems and evolves through experimentation.
As the software is expanded and generalized, it

becomes difficult to modify and maintain due to
this ad-hoc development style.
Our approach to deal with these problems is
based on component based software development.
Component based software development is based
on the concept of building software systems by
selecting, adapting and integrating a set of pre-
engineered and pre-tested reusable software
components. Component based software
development has the potential to: reduce cost and
development by allowing systems to be built from
reusable components, enhance software reliability
as components undergo evaluation during each
use, improve maintainability and extensibility by
allowing plug-and-play component replacement ,
and enhance the quality of applications by
allowing application-domain experts to develop
components. To provide this capability, the
infrastructure contains an intelligent component
integration subsystem that automates component
retrieval, adaptation, and integration. It takes the
user's request, locates the corresponding
components in a database and uses knowledge
about the components to generate adapters
required for component integration.
In the next section, we describe the framework for
component-based software development that is
the foundation for the intelligent component
integration system. We then describe how the
intelligent component integration system is
integrated with client/server architecture to
support scalability and concurrent generation of
multiple applications in a heterogeneous and
distributed computing environment.

2 Component integration framework
Web based application is a combination of
distributed and heterogeneous components. These
applications include modeling and simulation for
solving complex scientific and engineering
problems. In web based application there are
different layers in the architecture that represent
application. Each layer consists of components
that reflect the functionality of the layer. In the
following section, we introduce the general
architecture of web application in the web
environment.
The process of design has some fundamental
characteristics that cut across the different focus

areas, and in fact, across the design of all aspects
of a complex system, going beyond the
Information Systems aspects alone, as illustrated
in the following simplified process diagram:

Components
Data
Base

Components
selection

DESIGN:
Components
integration

REALIZATION

TESTING/
Monitoring

Implement/ Refine

Deploy/ Tune

Requirements/ Update

System Requirements

The results of specification retrieval and matching
are used to guide the selection of adapters that are
used to integrate components. The system
contains specifications of standard adaptation
strategies that are used in the system. A strategy
determines which adapter to generate and
provides heuristics describing how to specialize it
to the application being generated. Adapters are
associated with each of the matching relationships
that could exist between user request and library
components. These adapters can be mapped into
Java components using event-based component
integration. The component retrieval and
adaptation approach outlined above supports a
bottom-up development style. Web based
applications are applications that make heavy use
of a database, document management systems,
web-based repositories and search engines, and
workflow systems that capture and support data-
oriented business processes. Design of a complex
web based application system is an ongoing

exercise in finding the right configuration in a
high-dimensional space of design choices. We
use the term component integration broadly to
denote design models and theories, design
methodologies, and tools that build upon them.
They are especially valuable in dynamic
environments where the system must constantly
react to changes in the environment, or be re-
configured frequently to respond to changes in
the objectives of the enterprise. This paper dealt
with the problem of focused crawling using
component integration intelligent crawling agent
based on agent based learning. A crawler must be
able to recognize patterns within the Web graph
and make the right choices in order to be efficient
and cost-effective. Agent based learning was
chosen because it is a method that allows an agent
to accumulate knowledge by experimenting with
the environment, without using direct
supervision. It seems to be appropriate for the
task of Focused Crawling where success can be
recognized but detailed guidance to this success
cannot be provided, as would be required by a
supervised learning approach.

3 Integration example
Focused crawling is a relatively new, promising
approach to improve search on the Web
[1,13,19,20]. A Focused crawler searches the
Web for relevant documents, starting with a base
set of pages. Each of these pages contains usually
many outgoing hyperlinks and a crucial procedure
for the crawler is to follow the hyperlinks that are
more probable to lead to a relevant page in the
future. Therefore, the crawler must include a
component that evaluates the hyperlinks, usually
by assigning a numerical score to each one of
them. The highest the score is, the more probable
it is that this hyperlink will lead to a relevant page
in the future. This component is implemented
here by a classifier/distiller learning agent. This
agent recognizes different states of the
environment and for each of these states it is able
to choose an action from a set of actions. The
choice of the action that the agent will perform is
represented simply as a look-up table.
Another important factor of this system is the
environment. The environment judges each of the

agent's choices (actions) by providing a numerical
reward. The reward is indicative of what we want
the agent to perform, but not how it will perform
it. When a reward is given, the course of actions
that the agent has followed so far gets credit.
This is a promising solution to the central
problem of focused crawling, which is to assign
credit to all the pages of the path that leads to a
relevant document. Our aim is to construct a
focused crawler that uses an agent to train the link
scoring component. This crawler should have
increased ability to identify good links, because
of the agent based scheme, and therefore become
more efficient and faster than a baseline crawler.
Focused crawling starts from a user-specific or
group-specific set of topics along with a training
set of documents and crawls the Web with focus
on these specific topics of interest. The key
components of a focused crawler are classifier
used to test whether a visited document fits into
one specific topic of interest, and distiller to
identify the best URLs for the crawl. The quality
of the training data is obviously the most critical
issue for both components. The focused crawling
process can either build a personalized,
hierarchical ontology whose tree nodes are
populated with relevant documents, or it can be
initiated to process a query. Our approach
myCrawler integrates the following components:
the crawler, document analyzer, the SVM
classifier, the feature selection filter and the
training module for the classifier. The support
vector method was developed to construct
separating hyperplanes for pattern recognition
problems. In the 1990s it was generalized for
constructing nonlinear separating functions and
for estimating real-valued functions. Applications
of SVMs include text categorization, character
recognition and face detection. The main idea of
the SVM approach is to map the training data into
a high dimensional feature space in which a
decision boundary is determined by constructing
the optimal separating hyperplane. Computations
in the feature space are avoided by using a kernel
function. The formal goal is to estimate the
function f: R->{+1,-1} using input/output training
data such that f will correctly classify examples.
Simply minimizing the training error does not
necessarily result in good generalization. Support

Vector classifiers are based on the class of
hyperplanes and corresponding to the decision
function f. The unique hyperplane with maximal
margin of separation between the two classes is
called the optimal hyperplane. The optimization
problem thus is to find the optimal hyperplane. If
f is a nonlinear function one possible approach is
to use a neural network, which consists of a
network of simple linear classifiers. Problems
with this approach include many parameters and
the existence of local minima. The SVM
approach is to map the input data into a high,
possibly infinite dimensional feature space, via a
nonlinear. This high dimensionality leads to a
practical computational problem in feature space.
The system is implemented in Java and runs
under Web application server. Some components
are also implemented as stored procedures under
mySQL and other components are Java servlets
under the Apache web server. All documents that
the crawler fetches are stored in mySQL database.
myCrawler uses an open-source implementation
of a support-vector-machine (SVM) classifier.
The classification proceeds in a top-down manner
starting from the root of the ontology tree. For
each node the classifier returns a yes/no decision
and a confidence measure of the decision. The
document is assigned to the node with the highest
confidence in a yes subtree. Next, the
classification proceeds with the children of this
node, until eventually a leaf node is reached.
myCrawler periodically re-trains the classifier to
improve the effectiveness of classifications. It is
clear from experiments that the accuracy of the
ontology’s documents improves as the crawl
proceeds and undergoes re-training.

4 Conclusion
Application development, and in particular Web
Clients are demanding high-quality applications
in Web time to support critical processes. Modern
Web applications consist of many loosely coupled
technologies requiring diverse, often distributed
teams, to create highly linked resources that are
seldom collectively managed. Addressing this
"software paradox" and managing application
development complexity requires best tools that
can be selected and integrated to provide a roles
appropriate, end-to-end development environment

tailored to individual development processes. But
integrated tools require a platform of services,
frameworks, and standards that allow vendors to
focus on their value-add while reusing common
infrastructure. The platform must include a
workbench that provides a common view of the
whole application across all resource types and
the entire team. And the platform must be
accessible to tool vendors under an acceptable
license. We have outlined the architecture of
component integration system that supports the
component based development of web
applications. The system relies on specifications
to describe components, wrappers, and
architectures and uses automated reasoning
techniques to retrieve, adapt, and integrate
components.
The results of the experiments based on focused
crawling show that agent based is a good choice
for this task. Indeed, in most of the cases only a
small number of steps were required in order to
retrieve all the relevant pages.
Further work includes further experimentations
and potential extension of the method,
incorporating features of the method used in
myCrawler.
Our approach not only provides such a platform,
but its architecture also provides flexibility in
how tool integrate and at what level.

References

[1] Aggarwal C., Al-Garawi F. and Yu P. Intelligent
Crawling on the World Wide Web with Arbitrary
Predicates. In Proceedings of the 10th International
WWW Conference, pp. 96-105, Hong Kong, May
2001.
[2] Brin S. and Page L. The Anatomy of a Large-Scale
Hypertextual Web Search Engine. In the Proceedings
of the Seventh International WWW Conference, pp.
107-117, Brisbane, April 1998.
[3] Bosak, J. and Bray, T., “XML and the Second-
Generation Web”, Scientific American, May 1999.
[4] C.J.C. Burges: A Tutorial on Support Vector
Machines for Pattern Recognition, Data Mining and
Knowledge Discovery, Vol.2, No.2, 1998.
[5] B. Fischer, J. Whittle: An Integration of Deductive
Retrieval into Deductive Synthesis. Proceedings of the
14th International Conference on Automated Software
Engineering (ASE-99, October 1999.

[6] Chakrabarti S., van den Berg M. and Dom B.
Focused Crawling: A New Approach to Topic-Specific
Web Resource Discovery. In Proceedings of the 8th
International WWW Conference, pp. 545-562,
Toronto, Canada, May 1999.
[7] CROSS-lingual Multi Agent Retail Comparison.
http://www.iit.demokritos.gr/skel/crossmarc.
[8] Hersovici M., Jacovi M.,Maarek Y., Pelleg D.,
Shtalhaim M. and Sigalit U. The Shark-Search
Algorithm - An Application: Tailored Web Site
Mapping. In Proceedings of the Seventh International
WWW Conference, Brisbane, Australia, April 1998.
[9] Karkaletsis V., Paliouras G., Stamatakis K.,
Pazienza M.-T., Stellato A., Vindigni, M., Grover C.,
Horlock J., Curran J., Dingare S. Report on the
techniques used for the collection of product
descriptions, CROSSMARC Project Deliverable D1.3,
2003.
[10] Orfali, B. and Harkey, D., Client/Server
Programming with Java and CORBA, Wiley, 1998.
[11] Pour, G., “Component Technologies: Expanding
the Possibilities for Web-Based Enterprise Application
Development, “Chapter in, Internet Technologies and
Applications: Advanced Research, Theory, and
Practice, To appear, 2000.
[12] Dorin Petriu, Murray Woodside, "Software
Performance Models from System Scenarios in Use
Case Maps", Proc. 12 Int. Conf. on Modelling Tools
and Techniques for Computer and Communication
System Performance Evaluation (Performance TOOLS
2002), London, April 2002.
[13]Grigoriadis A, Paliouras G., “Focused Crawling
using Temporal Difference-Learning”. Proceedings of
the Panhellenic Conference in Artificial Intelligence
(SETN), Lecture Notes in Artificial Intelligence,
Springer Verlag, 2004.
[14] Khalid H. Siddiqui, C.M. Woodside
“Performance aware software development (PASD)
using resource demand budgets” In the Proceedings of
the third international workshop on Software and
performance, pp.275 – 285, July 2003
[15] McCallum A., Nigam K., Rennie J. and Seymore
K. Building Domain-Specific Search Engines with

Machine Learning Techniques. In AAAI Spring
Symposium on Intelligent Agents in Cyberspace,
Stanford University, USA, March 1999.
[16] Murali Sitaraman, Greg Kulczycki, Joan Krone,
William F. Ogden, A.L.N. Reddy “Performance
Specification of Software Components”, Proceedings
of SSR '01, pp. 310. ACM/SIGSOFT, May 2001
[17] Cervantes Hector, Senior project,2004
[18] Stamatakis K., Karkaletsis V., Paliouras G.,
Horlock J., Grover C., Curran J.R. and Dingare S.
Domain-specific Web Site Identification: The
CROSSMARC Focused Web Crawler. In Proceedings
of the Second International Workshop on Web
Document Analysis (WDA2003), p.75-78. 3-6 August
2003, Edinburgh, Scotland.
[19]The BINGO! Focused Crawler at the TREC
WebTrack (Poster). Martin Theobald, Sergej Sizov.
Text Retrieval Conference (TREC), Gaithersburg,
Maryland, 2003
[20] Wasniowski R., “Improving the Web Search
Performance,” RAW-94- 32, June, 2004.
 [21] V. Vapnik: Statistical Learning Theory. Wiley,
New York, 1998

