
Measuring Maintainability in Early Phase using Aesthetic Metrics

MATINEE KIEWKANYA1 AND PORNSIRI MUENCHAISRI2
Department of Computer Engineering, Faculty of Engineering

Chulalongkorn University
THAILAND

Abstract: - Assessing maintainability at the design level will help software designers to decide if the design of

the software should be altered for reducing cost of software maintenance in later phase. This paper presents a
controlled experiment carried out to investigate whether aesthetic metrics can be indicators of class and sequence
diagrams maintainability and to establish maintainability models from aesthetic metrics. The experimental result
indicates that aesthetic metrics can be indicators of class and sequence diagrams maintainability. Two
maintainability models are constructed using two techniques: Discriminant Analysis and Decision Tree in order to
find the best one. Our preliminary result shows that the accuracy of model constructed using Decision Tree is
higher than that of the other one.

Key-Words: - Maintainability, Aesthetic Metric, Class Diagram, Sequence Diagram

1. Introduction
Maintenance of software system is frequently viewed
as a phase of lesser importance than the design and
development phase of the system life cycle. In fact, 50-
70% of the total life cycle cost is spent on software
maintenance [8]. In order to reduce maintenance cost,
maintainability should be measured in early phase.

General approach for capturing software
maintainability is the utilization of software metrics.
Zhuo et al. presented constructing and testing software
maintainability assessment models in [2]. This work
focused on assessing software maintainability using
metrics based on features of the source program.
Constructing maintainability model for industrial
software from software metrics was presented in [12].
[10] suggested metrics for measuring the
maintainability of a target software system and
discussed how to combine these metrics into a single
index of maintainability.

The Unified Modeling Language (UML) is
accepted as an industrial standard for modeling object-
oriented design. In its current form, class and sequence
diagrams are two major artifacts acted as blueprints of
object-oriented software. Therefore, quality of object-
oriented software ultimately implemented is heavily
dependent on quality of both diagrams.

An aesthetic criterion is a general graphical
property of the layout that we would like to have.
Drawing graph by conforming to aesthetic criteria is
claimed that the resultant graph is improved its

readability. Commonly used aesthetic criteria for
traditional graph drawing were presented in [3,7].
Many researches on UML diagrams focused on
aesthetical principal taken from graph drawing.
Purchase and his colleagues presented an empirical
study attempting to identify the most important
aesthetics for the automatic layout of class diagrams
from a human comprehension point of view [6]. They
also performed experiments assessing the effect of
individual aesthetics in the application domain of class
and collaboration diagrams in order to create a priority
listing of aesthetics for this domain [5]. In [4],
Eichelberger proposed some aesthetic criteria that
reflect the highly sophiticated structural and semantic
features of class diagrams.

From now on, we interchange the term class and
sequence diagrams with the term software design
model. Goals of our work are to investigate whether
aesthetic metrics can be indicators of software design
model maintainability and to establish maintainability
models from aesthetic metrics. Following Boehm
model [9], this work focuses on two sub-characteristics
of maintainability: understandability and modifiability.
Our experimental result shows that aesthetic metrics
can be good indicators of maintainability. We
construct two maintainability models applying two
classification techniques called Discriminant Analysis
and Decision Tree. Both obtained models can classify
maintainability of software design model into three
levels: difficult, medium and easy.

This work was supported by "Chulalongkorn-Industry Linkage
Research Fund".

The next section presents aesthetic criteria and
metrics used in this work. Section 3 describes a
controlled experiment carried out to accomplish
research goals. Then, experimental results are
presented in section 4. Conclusions and future work
are given in the last section.

2 Metric Selection
In this work, we select a set of aesthetic criteria, then
define a set of aesthetic metrics corresponding to the
selected aesthetic criteria. The metrics consist of
metrics for class diagram and metrics for sequence
diagrams which are shown in Table 1. In this table, the
metrics corresponding to aesthetic criteria for
traditional graph drawing that can be applied for class
diagram are Cross, UnifEdgeLen, TotEdgeLen,
MaxEdgeLen, UnifBends, TotBends, MaxBens, and
Orthogonal [3,7]. Metrics namely Join, Center, Below,
SameCo and Indicator are metrics corresponding to
aesthetic criteria for class diagrams proposed by
Purchase et al. [5,6] and Eichelberger et al. [4].
Metrics for sequence diagrams are adapted from
metrics proposed by Paranen et al. [14].

3 A Controlled Experiment
This section describes the experiment carried out to
pursue the following goals:
- to investigate whether aesthetic metrics can be

indicator of maintainability.
- to establish prediction models for maintainability

from aesthetic metrics.

3.1 Subjects
The experimental subjects used in this work were 60
graduate students from the Department of Computer
Engineering at Chulalongkorn University, Bangkok,
Thailand, who passed classes on Software
Requirements Engineering and Object-Oriented
Technology. These classes were supplemented by
practical lessons where the students had the
opportunity to design real-world object-oriented
software using UML diagrams. The subjects were
classified into 20 teams by considering grades they
obtained from classes mentioned above. Each team
had one A, one B+ and one B students. This was
performed in order to reduce the difference of ability
among teams of subjects to understand and modify
software design models.

3.2 Experimental Material and Task
Forty software design models with different domains
were used in this experiment. The documentation of
each software design model consisted of the general
software description, the class diagram, the sequence
diagrams and a set of the examinations for assessing
understandability and modifiability. Each subject team
was asked to complete the examinations of 2 software
design models that were randomly assigned for the
team. Timeout periods of the examinations for
assessing understandability and modifiability were 30
minutes and 40 minutes respectively. These timeout
periods were determined from a pilot test. There was
20-minute break between experimental task of 2
software design models.

3.3 Data Collection
Maintainability is an external quality characteristic that
cannot be measured directly. Following Boehm model
[9], maintainability in this work is considered from its
two sub-characteristics: understandability and
modifiability. For each software design model, data
collected from the experiment can be listed as follows.
− Understandability score is quantified from the mean

of 3 subjects’ score of the examination for assessing
understandability.

− Modifiability score is quantified from the mean of 3
subjects’ score of the examination for assessing
modifiability.

− Maintainability score is calculated from the sum of
understandability score and modifiability score.
Maintainability level is captured by converting
maintainability score into 0, 1 or 2 which indicates
maintainability level: difficult, medium, and easy
respectively. Each maintainability score can be
converted using the following condition:

If Maintainability score < Average value of
maintainability scores – Standard deviation value
of maintainability scores

Then Maintainability level = 0
Else If Maintainability score > Average value

of maintainability scores + Standard deviation
value of maintainability scores

 Then Maintainability level = 2
 Else Maintainability level = 1
 The result of Kolmogorov-Smirnov test on
maintainability scores shows that maintainability
scores have normal distribution. Therefore, our
approach for converting maintainability score into
maintainability level can be considered valid.

Table 1. The aesthetic metrics used in the experiment.

Metrics for Class Diagram
Metric Description Aesthetic Criteria

Cross Total number of edge crossings The total number of edge crossings should be
minimized.

UnifEdgeLen Standard deviation of the edge length
(In this work, the edge length is measured in unit of
centimeter.)

Edge lengths should be uniform.

TotEdgeLen Total edge length The total edge length should be minimized.
MaxEdgeLen Maximum edge length The maximum edge length should be minimized.
UnifBends Standard deviation of the number of bends on the

edges
The standard deviation of the number of bends on the
edges should be minimized.

TotBends Total number of bends in the drawing The total number of bends should be minimized.
MaxBends Maximum number of bends on the edges The maximum number of bends on the edges should be

minimized.
Orthogonal Total number of edges fixed to an orthogonal grid

divided by total number of edges
Nodes and edges should be fixed to an orthogonal grid.

Join Total number of joined hierarchies divided by total
number of hierarchies

generalizations, aggregations and compositions should
be joined.

Center Total number of hierarchies that the parent is located
as the center of its children divided by total number
of hierarchies

A parent node should be positioned as close as possible
to the median position of its children.

Below Total number of hierarchies that the parent is located
above its children divided by total number of
hierarchies

A child node should be positioned below its parent.

SameCo Total number of hierarchies that the children nodes
are located on the same vertical or horizontal
coordinate divided by total number of hierarchies

Nodes on the same hierarchy level should have the
same vertical or horizontal coordinate.

Indicator Total number of edges representing association
relations that have clear label and directional
indicator divided by total number of edges
representing association relations

Edge should be clearly labeled and should have
directional indicator.

Metrics for Sequence Diagrams
Metric Description Aesthetic Criteria

ACrossS Average number of crossings
(Total number of crossings in all sequence diagrams
divided by total number of sequence diagrams)

The total number of edge crossings should be
minimized.

MaxEdgeLenS Maximum edge length of all sequence diagrams The maximum edge length should be minimized.
AUnifEdgeLenS Average standard deviation of edge length

(Summation of standard deviation of edge length of
all sequence diagrams divided by total number of
sequence diagrams)

Edge lengths should be uniform.

ASubsetSeptS Average number of distinct subets of particiapants
(total number of distinct subsets of participants of all
sequence diagrams divided by total number of
sequence diagrams)

The distinct subsets of participants should be
maximized.

4 Experimental Results
This section presents metric validation and
constructing maintainability models.

4.1 Metric Validation
The main goal of our experiment is to analyze class
and sequence diagrams for validating the possibility of
the aesthetic metrics being used as good indicators of
class and sequence diagrams maintainability. We
propose the following hypotheses:
H0 : the aesthetic metrics cannot be indicators for
classifying maintainability level.

H1 : the aesthetic metrics can be indicators for
classifying maintainability level.

In order to test this hypothesis, we select
Multivariate analysis of variance (MANOVA) [1].
This is a test of overall relationship between groups
and predictors by considering variance in the set of
predictors that effects on group classification. The
result of this test is shown in Table 2. H0 is rejected
because P-value is less than significant level (0.001).
We can conclude that three groups of maintainability
levels can be distinguished on the basis of the
combination of the aesthetic metrics.

Table 2. MANOVA test.

Source of
Variance

Wilks’
Lambda

df1 df2 Multivariate
F

P-
value

Maintainability
level

0.003094 32 44 23.3427 <0.001

4.2 Constructing Maintainability Models
The data collected from the experiment are analyzed in
order to construct maintainability models.

4.2.1 Correlation Analysis
Correlation between each pair of metrics mentioned in
Table 1 is considered in order to discard metrics that
provide redundant information. This can be automated
by applying Pearson’s correlation test.

For each couple of highly correlated metrics, only
one of them will be selected. Linear regression with
one independent variable is performed for each metric.
Then, adjusted R square value is used to determine the
best choice. Adjusted R square value of independent
variable (aesthetic metric) indicates that it can explain
the variance of dependent variable (maintainability
level) well or not. The metric with higher adjusted R
square value will be chosen. Following this selection
process, MaxEdgeLen, MaxEdgeBens and
MaxEdgeLenS are discarded. One more discarded
metric is Cross since its value obtained from sample
class diagrams are not different (more than 80% are
zero value). Therefore, it is useless for classifying
maintainability level.

4.2.2 Discriminant Analysis
Discriminant analysis employs a concept very similar
to the regression equation, and it is called the
discriminant function [11]. The general form of the
discriminant function is

D = a+b1x1+b2x2+…+bnxn
where, D is the discriminant score, a is a constant
value, bi is the classification function coefficient and xi
is independent variable. We apply Fisher’s linear
discriminant function. For classifying object into one
of N groups, this technique generates N discriminant
functions representing N groups. New object will be
assigned to the group giving the highest discriminant
score. So, for classifying three levels of
maintainability, three following discriminant functions

are generated by this technique. From now on, this
functions will be called ‘Discriminant Analysis
maintainability model’.

Difficult level’s function:
 D_Main = -1.276×UnifEdgeLen +0.861×TotEdgeLen -
2.868×UnifBends-1.377×TotBends+12.003×Orthogonal-
4.107× Join+124.847×Center+20.707×Below+19.424×
SameCo - 2.953× Indicator + 0.676×ACrossS-2.314×
AUnifEdgeLen+1.176×ASubSetSeptS-96.411

Medium level’s function:
M_Main = -1.180×UnifEdgeLen +0.967×TotEdgeLen
+2.674×UnifBends-1.786×TotBends +9.867× Orthogonal-
7.721× Join+125.045× Center +18.743×Below+29.401
×SameCo - 2.283× Indicator + 0.699× ACrossS-3.064
× AUnifEdgeLen+2.289×ASubSetSeptS-94.547

Easy level’s function:
E_Main = -1.374×UnifEdgeLen +0. 948×TotEdgeLen -
3.766×UnifBends-1.5×TotBends +14.66× Orthogonal-
3.978× Join+130.887× Center+21.803×Below+23.524
×SameCo - 3.914× Indicator + 0.745× ACrossS-3.429×
AUnifEdgeLen+0. 075 × ASubSetSeptS-94.199

In order to classify a new software design model,
function D_Main, M_Main and E_Main will be
calculated. Then the software design model will be
allocated to the group that provides the highest value
among 3 functions.

4.2.3 Decision Tree
In this work, we use ID3 algorithm for developing
decision tree [13]. Measure called information gain is
a statistical property that measures how well a given
attribute separates the training examples according to
their target classification. In order to define
information gain precisely, a measure commonly used
in information theory, called entropy, that
characterizes the impurity of an arbitrary collection of
examples, should be defined first. Let S is a collection
of examples, c is the number of classes, then the
entropy of S relative to this c-wise classification is
defined as

Given entropy as a measure of the impurity in a
collection of training examples, information gain is a
measure of the effectiveness of an attribute in
classifying the training data. It is simply the expected
reduction in entropy caused by partitioning the
examples according to this attribute. The information
gain, Gain(S,A) of an attribute A, relative to a
collection of examples S, is defined as

∑
=

−≡
c

i
ii ppSEntropy

1
2log)(

)()(),(
)(

v
AValuesv

v SEntropy
S
S

SEntropyASGain ∑
∈

−≡

ID3 determines the information gain for each
candidate attribute, then selects the one with highest
information gain to be tested first in the tree. The
process of selecting a new attribute and partitioning
the training examples is repeated for each nonterminal
descendant node.

The maintainability model obtained by applying
Decision Tree is shown in Figure 1. From now on, this
tree will be called ‘Decision Tree maintainability
model’. A new software design model is classified by
starting at the root node of the tree, testing the metric
specified by this node, then moving down the tree
branch corresponding to the value of the metric. This
process is then repeated for the subtree root at the new
node until leaf node is reached.

4.3 Comparison between Discriminant Analysis
and Decision Tree Maintainability Models
Decision Tree maintainability model indicates that the
metrics that can be good indicators for maintainability
are ACrossS, ASubsetSeptS, SameCo, TotEdgeLen,
Below and UnifEdgeLen respectively. Metric testing
in each node corresponds to metric criteria proposed in
Table 1 except testing of UnifEdgeLen. For example, a
software design model which have high value of
ACrossS (more than 11) will be classified into
Difficult level represented by 0. This classification
corresponds to metric criteria for ACrossS as the total
number of edge crossings should be minimized. We
cannot conclude that which metrics are better than
other metrics to be used as maintainability indicators
for Discriminant Analysis maintainability model. The
classification function coefficient of each metric
cannot indicate that which metric is better because of
difference of metric unit.

Both maintainability models are used to predict
maintainability level of 40 software design models that
are used for constructing the models. In order to
validate model accuracy, we decide to use technique of
cross validation [13] as a result of lacking new sample
software design models. This technique constructs
maintainability model from 39 sample software design
models and leaves one out in order to validate model
accuracy. So, maintainability model is constructed 40
times by changing a sample software design model
that is left out. Table 3 and Table 4 show the
results of classifying original group cases and
cross-validated group cases. Table 5 shows
misclassification rates of both maintainability models.

Percent of Type I error is computed from the total

number of cases that meet the following conditions
and is divided by the total number of cases.

- case in group of 0 is classified as 1
- case in group of 1 is classified as 0
- case in group of 1 is classified as 2
- case in group of 2 is classified as 1

Percent of Type II error is computed from the total
number of cases that meet the following conditions
and is divided by the total number of cases.

- case in group of 0 is classified as 2
- case in group of 2 is classified as 0
Type II error is more fatal than Type I error. The

result in Table 5 shows that Type I error percentage of
Disciminant Analysis maintainability model is higher
than that of Decision Tree maintainability model but
Type II error percentage is in contrast. However,
Overall error percentage of Decision Tree
maintainability model is lower than that of
Discriminant Analysis maintainability model.

5. Conclusions and Future Work
This paper presents a controlled experiment carried out
in order to investigate whether aesthetic metrics can be
indicators of class and sequence diagrams
maintainability and to establish maintainability models
from aesthetic metrics applying Discriminant Analysis
and Decision Tree. Our result shows that aesthetic
metrics can be indicators of class and sequence

ACrossS

ASubsetSeptS

> 11

Maintain. Lev. = 0

> 1.333

Maintain. Lev. = 1

<= 11

<= 1.333

SameCo
> 0.857 <= 0.857

Maintain. Lev. = 2TotEdgeLen
<= 22.8 > 22.8

Maintain. Lev. = 2 Below

<= 0.846 > 0.846

Maintain. Lev. = 1 UnifEdgeLen

<= 6.174

Maintain. Lev. = 1

> 6.174

Maintain. Lev. = 2

Figure 1. Decision Tree maintainability model.

Table 3. Classifying group cases using Discriminant
 Analysis maintainability model.

Main.

Predicted Group
Membership

 Level 0 1 2 Total
Original Count 0 6 2 0 8
 1 0 17 2 19
 2 0 1 12 13
 % 0 75.0 25.0 0.0 100.0
 1 0.0 89.5 10.5 100.0
 2 0.0 7.7 92.3 100.0
Cross-
validated

Count 0
1

4
1

2
15

2
3

8
19

 2 0 3 10 13
 % 0 50.0 25.0 25.0 100.0
 1 5.3 78.9 15.8 100.0
 2 0.0 23.1 76.9 100.0

 87.5% of original grouped cases correctly classified.
 72.5% of cross-validated group cases correctly classified.

Table 4. Classifying group cases using Decision Tree

 maintainability model.

Main.
Predicted Group

Membership

 Level 0 1 2 Total
Original Count 0 5 2 1 8
 1 0 19 0 19
 2 0 0 13 13
 % 0 62.5 25.0 12.5 100.0
 1 0.0 100.0 0.0 100.0
 2 0.0 0.0 100.0 100.0
Cross-
validated

Count 0
1

4
2

2
16

2
1

8
19

 2 1 2 10 13
 % 0 50.0 25.0 25.0 100.0
 1 10.5 84.2 5.3 100.0
 2 7.7 15.4 76.9 100.0

 92.5% of original grouped cases correctly classified.
 75% of cross-validated group cases correctly classified.

Table 5. Misclassification rates of maintainability
models (%) .

Maintainability
 Model

Original Cross-validated

 Type
I

Error

Type
 II

Error

Overall
Error

Type
I

Error

Type
 II

Error

Overall
Error

Discriminant
Analysis 12.5 0.0 12.5 22.5 5.0 27.5

Decision Tree 5.0 2.5 7.5 17.5 7.5 25.0

diagrams maintainability. The result of model
validation indicates that accuracy of Decision Tree
maintainability model is higher than that of
Discriminat Analysis maintainability model. This
result may be considered as the preliminary finding.
For future work, this experiment should be repeated
with more number of sample software design models.
Other classification techniques will be used for
constructing maintainability model in order to improve
its accuracy.

Acknowledgement:
The authors would like to thank Prof. Ross Jeffery for
his valuable comments and suggestions.

References:
[1] B.G. Tabachnick and L.S. Fidell, Using

Multivariate Statistics, Allyn&Bacon, 2001.
[2] F. Zhuo, B. Lowther, P. Oman, and J. Hagemeister,

“Constructing and Testing Software
Maintainability Assessment Models,” Proc. of the
1st International Software Metrics Symposium,
1993, pp. 61-70.

[3] G. Di Battista, P. Eades, R. Tamassia, and I.G.
Tollis, Graph Drawing, Prentice Hall, 1999.

[4] H. Eichelberger, “Aesthetics of Class Diagrams,”
Proc. of the 1st IEEE Interation Workshop on
Visualizing Software for Understanding and
Analysis, 2002, pp. 23-31.

[5] H.C. Purchase, J-A. Allder and D. Carrington,
“Graph Layout Aesthetic in UML Diagrams: User
Preferences,” Jounal of Graph Algorithms and
Applications, Vol.6, No. 3, 2002, pp. 255-279.

[6] H.C. Purchase, L. Colpoys and M. Mcgill, “UML
Class Diagram Syntax: An Empirical Study of
Comprehension”, Proc. of the Australian
Symposium on Information Visualisation, 2001.

[7] H.C. Purchase, R.F. Cohen, and M. James,
Validating Graph Drawing Aesthetics, Lecture
Notes in Computer Science, 1027:435-446,1996.

[8] I. Sommerville, Software Engineering, Addison
Wesley, 1996.

[9] N. E. Fenton and S. L. Pfleeger, Software Metrics:
A Rigorous and Practical Approach, PWS
Publishing, 1997.

[10] P. Oman and J. Hagemeister, “Metrics for
Assessing a Software System’s Maintainability,”
Proc. of Conference on Software Maintenance
1992, 1992.

[11] R.A. Johnson and D.W. Wichern, Applied
Multivariate Statistical Analysis, Prentice Hall
International, 1988.

[12] S. Muthanna, K. Kontogiannis, K. Ponnambalam,
and B. Stacey, “A Maintainability Model for
Industrial Software Systems using Design Level
Metrics,” Proc. of the 7th Working Conference on
Reverse Engineering, 2000, pp.248-256.

[13] T. M. Mitchell, Machine Learning, The McGraw-
Hill Companies, Inc., 1997.

[14] T. Poranen, E. Makinen, and J. Nummenmaa,
“How to draw a sequence diagram,” Proc. of the
8th Symposium on Programming Languages and
Software Tools, 2003.

