

1

REVISITING INTEGER MULTIPLICATION OVERFLOW

Eyas El-Qawasmeh and Ahmed Dalalah
Computer Science Dept.

Jordan University of Science and Technology

ABSTRACT. Online problems arise in various applications ranging from load
balancing and scheduling to network and financial problems. However, some of
these online applications like financial tools, online calculators and online math
programs suffer from the overflow problem caused by the multiply operation of
two operands. The overflow occurs whenever the multiplication of any two-
integer numbers exceeds the maximum limit available for the result. Many
programming languages ignored this problem; therefore, the programmer has to
handle it, mostly in predict and avoid approach. This paper addresses the
detection and control of integer overflow in programming languages. Two
examples from C and Java programming languages are considered. The paper
suggests detect and do algorithms to handle the overflow. In addition, this
paper suggests adding a built-in function to test whether an overflow will be
generated by multiplication operation in advance.

KEYWORDS. BigInteger, Detection, Multiplication, Overflow

2

1. INTRODUCTION

Currently, the wide use of the World Wide Web increases the use of online
applications. In the online applications, the whole dataset is not available and
the application receives the information piece by piece from the user [Borodin, et
al., 1998]. Online problems arise in a wide variety of applications including
scheduling, robot motion planning, load balancing, math and financial problems
[Fiat, et al., 1998] [Grove, et al., 1995] [Irani, et al. 1997] [El-Qawasmeh, 2003].
Examples of online mathematical and financial applications include math clubs,
statistics tools, calculators, and interactive finance tools.

Some of the online computations must solve the overflow problem in order to get
the correct results. For example, the computation of a jackpot prize with one
ticket, where the number of combinations of 40 numbers takes 5 at a time is 40
choose 5 which is 40!/(40-5)!5!. The intermediate computation of 40! generates
a number that requires more than 50 digits. Another example is the calculation of
Fibonacci numbers for 100 and above. In these two examples, the result cannot
fit in a typical integer data type and it will produce incorrect results due to the
overflow of the multiply operation.

Multiplication is one of the common arithmetic integer operations that a processor
performs and it has been an active area in computer science [Gok, 2000]
[Schulte, et al. 2000]. When two unsigned n-bit numbers are multiplied together,
it is always possible to produce a result with 2n bits; as a result, an overflow
occurs. In other words, we are trying to store a number in a memory location that
is not large enough to hold it. A simplified example is an 8-bit variable, which can
hold a maximum number equal to (27

1) in case of signed integer or (28

1) in
case of unsigned integer. However, if we try to store a number equal to or greater
than 28 into this 8-bit variable, then an overflow will occur since we can t
represent that number with 8 bits [Elguibaly, 2000] [Gok, 2000] [Parhamin, 1988].

Many Programming languages, especially the procedural languages, have
ignored the overflow problem and shifted the responsibility of solving it toward
the programmer. However, programmers are unable to solve it efficiently. They
use one of two approaches: predict and avoid , or do and detect . The former
approach, which predicts the overflow problem and avoids it, works in many
cases, but when numbers get very large it does not work since it becomes
impossible to avoid the overflow due to the limitations in hardware or in language
itself. The later approach, which is a do and detect , lacks the capability to be
implemented in the programming language itself. Therefore, the programmer has
to do it using the assembly language. The use of assembly language is very time
consuming and tedious process, which might not work on all platforms.

An ideal solution to the overflow problem should detect and do the
corresponding operation. Either the hardware or the software can solve this
problem. A hardware approach might allow a computer word to be of a very big

3

size. For example, expand the 32-bit computer word to 128-bit. However, this
solution is not currently available due to many reasons. An alternative to the
hardware approach is the software approach, which can control the overflow by
providing a mechanism to detect the overflow and do the arithmetic operation. In
this paper, we devoted our attention toward the software to solve the overflow
problem.

This paper will review the detection of overflow in integer multiplication. Then, it
presents the corresponding algorithms to handle integer overflow in
multiplication. The presented algorithms allow us to handle integers of any size
(without any extra requirements of hardware) in the procedural languages. This
paper assumes that the size of the computer word is 16-bit unless mentioned
something else.

The organization of this paper is as follows. Section 2 is an overflow detection
process. Section 3 is a C language example. Section 4 is a Java example.
Section 5 is the suggested detect and do algorithms, and section 6 contains the
concluding remarks.

2. OVERFLOW DETECTION

Given unsigned integer A consists of n-bit where A = an-1an-2 ..a1a0. To produce
an overflow, it is sufficient (in unsigned multiplication) to have a "carry out" of the
most significant bit. For example, consider 3-bit representations of 5 and 6. The
multiplication of (5*6) = (101 * 110) should yield 11110, but in a 3-bit answer, the
most left 2-bits are lost and the result is 110 = 6.

The result of unsigned/signed multiplication will be out-of-range when it
generates a carry, which used to flag the error. The output bits remain valid, but
only as the n significant bits of 2n-bit result. The full result can be computed
using the carry out generated from the most significant bits of the result and
increasing the number of bits that can hold the number.

A hardware implementation defines its own process that it will execute for some
instances of undefined behavior. Undefined behavior occurs when the result is
not mathematically defined or when the result is not in the range of representable
values for its type. The immediate consequences of a signed integer overflow
mostly yield one of the following: 1)- a mathematically incorrect result; 2)- some
sort of trap that may appear as an implementation-defined signal; 3)- raising an
exception; and 4)- terminating the program.

Integer overflow detection should be implemented before its occurrence, not after
its occurrence. The reason for this is that the overflow in some programming
languages causes undefined behavior, so on some machines the program will
never reach the call to the function that checks whether an overflow occurred or
not. As an example, consider the following function skeleton code:

4

// sizeof (int) may be any number
Integer a, b, c
Boolean Overflow; /* Flag */
/* Assume arbitrary values assigned to a and b */
c = a * b; /* Possible overflow */
Overflow = Check_Integer_Overflow (); /* True if overflow occurs, or false otherwise */

Figure 1: Example of unreachable call to overflow detection after the multiply
operation

In a language like C, there is no way to reach the last statement of Figure 1
(provided that there is an overflow in (c = a * b)). Another reason to check for an
overflow before its occurrence is the absence of a compiler up to the knowledge
of the authors that has a portable way to detect an overflow after its occurrence.
Therefore, it is recommended to check for possible overflow before we apply the
multiplication on any two numbers that generates overflow.

Multiplication overflow should be detected in advance so that we can take the
necessary actions to handle it. There are two types here: unsigned numbers and
signed numbers. The unsigned numbers case is a special case of signed
numbers. Therefore, we will cover the signed numbers case. If the overflow
changes only one sign of the two operands then we can check for overflow by
verifying the sign of the answer. For this case, consider the following sign of truth
table

Multiplier Multiplicand Product
+ + +
+ - -
- + -
- - +

Let us assume that the + sign represent the true value (represented by non-zero
integer in C/C++) and

represent the false value (represented by zero value in
C/C++). Therefore, we can check for potential overflow from the following
equation.

Overflow = ((Multiplier sign XOR Multiplicand sign) !=Product sign) (1)

Where overflow is a logical variable that will be evaluated to true or false. If the
value of the variable Overflow is true then an overflow occurred, otherwise the
overflow did not occur probably. The previous test detect for overflow in most
cases, but not all of them. The following is a procedure, which detects overflow in
all cases

Boolean Test_Multiply (int x, int y)
Begin
 int product = x * y;

5

 If (y !=0 AND (product / y) !=x)
 return true; // Overflow will occur and normal multiplication should be avoided.
 else
 return false; // No Overflow End If
End

Figure 2: C-Like function to detect overflow in the multiplication

The authors recommend using the test in equation (1) to check for overflow. If
variable Overflow in equation (1) is false, then we need to apply procedure
Test_Multiply. A question will arise about this procedure when the product
generates undefined behavior. The solution to this is to avoid traditional
multiplication and use one of the algorithms that described later in this paper for
multiplication.

The overflow detection should be followed by a mechanism to do the
multiplication although we predict the occurrence of the overflow. The following
section discusses how the mechanism of handling it in some programming
languages by considering C and Java languages as two examples.

Currently, many programming languages raise an exception, which is the
standard solution to this problem. In this case, it will raise an exception without
treating the overflow problem. This is a way of detection and reporting the
overflow rather than solving it. This treatment does not produce the required
answer for the arithmetic operations. The later solution is not standard, but many
programmers use it commonly in practice.

The overflow problem can be reduced by using long integer arithmetic. There are
three basic strategies for implementing long integer arithmetic. The first strategy,
which is called the default strategy, is implemented in the traditional long integer
arithmetic package. The second strategy is to use Gnu Multi-Precision Package
(GMP) as a supplementary long integer arithmetic package. The third strategy is
to use GMP as the primary long integer arithmetic package. The GMP libraries
are available at http://www.swox.com/gmp.

3. C LANGAUGE APPROACH

The procedural language, which we will take as an example, is the C language.
C does not pay attention to the carry or overflow; it simply leaves the problem to
the programmer (it gives no access to the carry or overflow flags, which are
needed to verify the occurrence of overflow).

The standard of C language says that overflow is simply undefined behavior.
Therefore, you will not be able to detect it after its occurrence because the
program will go into the twilight zone. Thus, if you would like to detect overflow,
you must explicitly write some code before the multiply operation as we

http://www.swox.com/gmp

6

mentioned previously. Of course, for a given C compiler, overflow of integer
arithmetic multiplication may be well defined, but the code will not be portable.

In C, we do not need to generate such an overflow to determine the value of a
carry or an overflow flag that would result from multiplication. We can determine
whether the multiply operation would overflow before performing it. Take for
example a*b where a and b represent integer values. This operation overflows if
the result would be greater than MAX_INT or less than MIN_INT. An expression
that determines weather a*b would overflow in C is:

Overflow = (((a > 0) & (b > 0)) || ((a < 0) & (b< 0))) ? ((a > MAX_INT / b) || (b >
MAX_INT)) : ((a < MIN_INT / b) || (b < MAX_INT / a))

Where & means logical AND and || means logical OR in C language. Note that C
language permits throwing overflow exception on integer overflow, but the
implementation is not obligatory. Thus, the programmer must test for overflow by
himself. In this context, C does provide any of the basic facilities such as a test
for overflow.

4. JAVA APPROACH

Integer overflow in Java specification is not detectable, thus, it is the
responsibility of the programmer to verify the values by checking if an overflow
occurs or not. In Java, the result of integer overflow operation is specified to be
different from the arithmetically correct results by 2n where n is a 32-bit for type
integer.

Java provides a solution to the overflow by using the Big Integer class (BigInt)
instead of integer. The general mechanism of big integers is as follows: For
integers larger than a certain size (232 on most machines, 264 for some others)
we use a large integer library. All large integer libraries store each integer in
multiple machine words. For example, if we have a 128-bit number, and the
integer size of our machine is 32 bits, then it will use four machine words to store
that number.

The implementation of BigInt (Big Integer) class take care of the overflow so that
it will not be discarded, rather the results in a carry are handled just like pencil
and paper arithmetic. The difference in the implementation is the use of base 2
instead of base 10.

The BigInt class in Java allows the programmer to use very large values as long
as there is sufficient memory. A big integer is an integer, which does not
overflow. Internally, a big Integer (an object of class BigInt) is an array of single
digit values, and the array can grow as large as we need. Big Integers therefore
will not overflow. The BigInt class provides many constructors and methods,

7

among these methods is the multiply method. The multiply method returns the
answer (which is an object) through the this pointer.

5. DETECT AND DO ALGORITHM

The programming languages that does not support enough cure for the overflow
problem should use a different representation. One of these methods is the use
of arrays. The other method is to use linked lists. This paper uses three different
methods. The first method is the arrays, the second is linked list, and the third
method divides the number into two halves. It works for double the size of the
word and has limited capabilities.

The arrays method represents a number as a sequence of digits stored in an
array of characters. Then, we can write a function to do multiplication on those
arrays, and then make them as large as we want. Following is our algorithm for
doing the multiply operation based on arrays.

Algorithm Multiply()
// Declare the following
// S1, S2 strings
// Answer is one-dimensional array of type integer where each element contain part of the answer
// LengthMax is an integer temporary variable which contains the length of the largest number
Begin

Input Number1 and Number2 which you would like to do the multiplication.
For each number do the following
Store in strings S1, S2, the contents of Number1 and Number2 respectively (i.e. S1 =

string (Number1), S2 = string(Number2)). Thus, each string will hold the contents
of the number but in character form.

If (strlength (S1) > strlength (S2))
{

LengthMax = strlength (S1)
LengthMin = strlength (S2)

}
 else
{

LengthMax = strlength (S2)
LengthMin = strlength (S1)

}
For (I = 0; I < LenghtMin; I ++) do
{

count = 0
For (j=0;j<LengthMax, j++) do
{

Answer[I] = Answer[I] + (integer (S1[J]) * 10j)* integer (S2[I])
// casting and multiplication

//Increase count by 1
}

}
For (I = 0; I < LenghtMin; I ++) do

Break Answer[I] into its individual bits
For (I = 0; I < LenghtMin; I ++) do

Shift Answer[I] I bits to the left

8

For (J = 0; J < 2 * LenghtMax; J ++) do
{

Total = 0
Add bit No. J for all answers and print the total

}
End

Figure 3: The multiplication of two numbers

In this algorithm, we convert each number into an array of characters (strings).
Then the length of the longest two strings (S1, S2) is assigned to a variable called
LengthMax. Note that we convert each decimal digit into a character form,
where each character occupies two bytes (one for the character, and the other
unused temporally). Thus, if we have an integer number that consists of two
decimal digits, then they will be stored in 4 bytes as character variable. Figure 5
explains how we get the answer.

Figure 4: The multiplication of two overflowed numbers

The generated answer will not fit into the added resultant. In order to store the
value of the answer in a variable we might do one of the following two
approaches: 1)- Frequency Repetition, or 2)-Scaling.

In frequency repetition, we count how many times we have reached the
maximum integer available on the machine. Thus, the answer will be the
contents of our answer array minus the maximum integer; meanwhile we have
to create a variable called Frequency, which will contain the value 1. If our
answer overflows one more time, then the value of the frequency will be
incremented whenever saturation occurs.

As an example, consider Figure 4, where the answer array contains (2 and 73).
To find the result, we need to subtract MAX_INT from answer array and
increase the frequency by one. This step will be repeated until the content of
answer array becomes less than MAX_INT. The same thing applies to negative
numbers, however, we compare with MIN_INT.

The other method is the scaling method where we divide our number by some
factor and store the factor in a variable called Scaling. Note that this method
might generate rounding in the number.

No1 No22 1

2 bytes 2 bytes

31

2 1

2 bytes 2 bytes

1 3

2 bytes 2 bytes

* = 2 3

2 bytes 2 bytes

unused unused unused unused

Answer array

unused 7

9

To correct the output value of our answer, we trace answer array element by
element to print the required output.

A second algorithm is to use the linked list. Following is the exact algorithm for it
Algorithm Multiply_using_linked_list()
Begin

Input Number1 and Number2 which you would like to do the multiplication.
For the first variable, create a linked list and store each digit in a one node
For the second variable, create a linked list and store each digit in one node.
Create a linked list of length 2n that will hold the answer.
For each node (digit) in the second linked list do

Multiply the node with the first linked list and store the result in two nodes of the
answer linked list.

Print the result using all the nodes of the second linked list
End

A third method can be applied for a limited range of numbers. In this method, we
split the number into two halves and do normal multiplication. This allows us to
achieve the multiplication for 64 bits. However, if we use some special data types
such as __int64, which is available in Visual Studio version 6, then we can do the
multiplication operation on numbers each one has a length of 128 bits. Following
is algorithm Multiply_using_splitting() that divide the number into two halves
without using any special data types then it performs the multiplication operation.

Algorithm Multiply_using_splitting (No1, No2)
Begin
/* This program computes the entire 64-bits of the product and set

mask1 = 65535;
int a_half1 = No1 & mask1; // Get the least 16 bit of a
int a_half2 = No1 >> 16; // shift right to get the most 16 bit of a
int b_half1 = No2 & mask1; // Get the least 16 bit of b
int b_half2 = No2 >> 16; // Shift right to get the most 16 bit of b
int r1, r2, r3, r4, r12, r34

r1 = b_half1 * a_half1;
r2 = b_half1 * a_half2;
r3 = b_half2 * a_half1;
r4 = b_half2 * a_half2;
r12 = r1 + r2;
r34 = r3 + r4;
Print the answer which is a concatenation of (r12 , r34); // get 64 bit result

End

A fourth multiply algorithm is to use built in data structure called ArrayList which
exists in C# (ArrayList handles numbers as arrays but it allows the programmer
to use built in methods). The algorithm of it is a kind of similar to algorithm
Multiply() presented previously. However, it is designed for C#.

The previous paragraphs describes many variations for the Multiply algorithm.
Some of these variations are specific to a certain language like C#. Following is a
generic Detect and Do algorithm that handles overflow in multiplication.

10

The Detect and Do algorithm will be as follows:

Detect_and_Do (variable1, variable2)
// Frequency is an integer variable initialized to zero
Begin

If there is no overflow then
Do the normal multiplication

else
Apply the multiply algorithm //any version
Output the result using the corresponding data structure that holds the answer

End If
End

Figure 5: Detect and Do algorithm

An experiment conducted to see the time required by our algorithm. Table 1
shows the normalized time required by different variations of Multiply algorithm,
the time required by regular multiplication, and the use of __int64 in C/C++
language

Approach Regular Detect and D0
(Multiply)

Detect and Do
(Multply_using
_linked List)

Detect and Do
(Multiply_usin

g_splitting)

__int64

Normalized
time

1 3.4 4.4 4.6 1.7

Table 1: The time required by different approaches using C/C++

Note Visual C++ version 6, which contains a C compiler, allows the use of 64-bit
integer variables on 32-bit machines using the __int64 data type. In table (1), the
Detect and Do algorithm requires extra time, but it generates safer arithmetic

results. In this table, a value like 3.4 means that the required time for
multiplication using Detect and Do is about three times if we use regular
operations. However, there is a possibility of overflow using regular approach.
The same experiment was repeated using Java. The results of Java are listed in
table 2.

Approach Regular Detect and D0
(Multiply)

Detect and Do
(Multply_using
_linked List)

Detect and Do
(Multiply_usin

g_splitting)

Big Integer

Normalized
time

1 5.1 3.9 4.2 4.7

Table 2: The time required by different approaches using Java

All the previous programs where run many times and the average run time were
taken as a measurement in Table 1 and 2. In these experiments, we tried to
freeze all unnecessary operations of CPU while the program is running.

6. CONCLUDING REMARKS

11

The overflow problem occurs whenever the multiplication of two binary numbers
generates a result that does not fit into the same number of bits. The overflow
can have a large impact on the execution speed and on the software quality of
the final product either directly or indirectly [Burgess, 1995]. Many programming
languages do not specify what may happen in the event of overflow. Therefore,
the results are not those the programmer is intended to get.

A careful programmer will only rely on a minimum range for every variable, but
not on an upper bound. For example, a 32-bit application will handle 16-bit
values, but the opposite is not true. However, if the programmer blocked with the
maximum size, then he/she can use our suggested approach.

The suggested approach avoids the idea of increasing the capabilities of
computer hardware. The compensation for this is an extra cost in the execution
time. It is recommended and worth the addition of a built-in function that takes
two integer parameters and determines whether an overflow will occur or not.
This built-in function should be supported in the programming languages that
ignores overflow.

REFEREENCES

1- Borodin, A. El-Yaniv, R. Online Computations and Competitive Analysis.
Cambridge University Press, 1998.

2- Burgess, C. J., Software Quality Issues When Choosing a Programming
Language,

Proc. of the Third International Conference on Software Quality
Management, Vol. 2 of Software Quality Management III, pp. 25-31, Spain,
Apr. 1995.

3- Elguibaly, F., Overflow Handling in Inner-Product Processors, IEEE Trans.
on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 47,
No. 10, pp. 1086-1090, Oct. 2000.

4- El-Qawasmeh, E., Handling Overflow in Integer Addition in Inline
Computations, Digital Information Management Journal, India, Vol. 1, No. 3,
pp. 129-135, Sept. 2003.

5- Fiat, A. and Woeginger, G. (Eds.), Online Algorithms: The State of the Art.
Lecture Notes in Computer Science 1442. Springer, Berlin, 1998.

6- Irani, S. and Karlin, A. Online computation. In: Dorrit Hochbaum (editor),
Approximation Algorithms for NP-hard problems, chapter 13, pp. 521-564.
PWS Publishing Company, Boston, 1997.

12

7- Gok, M., Integer Multiplication with Overflow Detection or Saturation,

Master s Thesis, Lehigh University, PA, USA, 2000.

8- Grove, E., Kao, M.-Y, Krishnan, P. and Vitter., J., Online Perfect Matching
and Mobile Computing,

Proc. of the Fourth Workshop on Algorithms and

Data Structures (WADS '95), Kingston, Ontario, pp. 194-205, Aug. 1995.

9- Lang, T. and Bruguera, J. D., Multilevel Reverse-Carry Computation for
Comparison and for Sign and Overflow Detection in Addition, Proc. of the
International Conference on Computer Design, pp. 73-79, Oct. 1999.

10- Michael J. Schulte, Pablo L. Balzola, Ahmet Aakkas, Robert W. Brocato,
"Integer Multiplication With Overflow Detection or Saturation," IEEE Trans. on
Computers Vol. 49, No. 7, pp. 681-691, June 2000.

11- Mustafa G. "Integer Multiplication with Overflow Detection or Saturation,"
Master Thesis, Lehigh, USA, May 2000.

12- Schulte, M., Balzola, P., Akkas, A. and Brocato, R., Integer Multiplication with
Overflow Detection or Saturation, IEEE on Computers, Vol. 49, No. 7, pp.
681-691, Jul. 2000.

13- Parhamin, B., Zero, Sign, and Overflow Detection Schemes for Generalized
Signed Digit Arithmetic, Proc. of the 22nd Asilomar Conf. on Signals,
Systems, and Computers, Pacific Grove, CA, pp. 636-639, Oct./Nov. 1988.

14- GMP web page. http://www.swox.com/gmp/

http://www.swox.com/gmp/

Filename: OverflowOct5Conference
Directory: C:\EYAS\PAPERS\Under_Writing\MultiplicationOverflow
Template: C:\Documents and Settings\Eyas\Application

Data\Microsoft\Templates\Normal.dot
Title: Revisiting Overflow in Mulitiplication
Subject:
Author: Eyas El-Qawasmeh
Keywords:
Comments:
Creation Date: 10/12/2004 4:17 PM
Change Number: 2
Last Saved On: 10/12/2004 4:17 PM
Last Saved By:
Total Editing Time: 1 Minute
Last Printed On: 10/12/2004 4:17 PM
As of Last Complete Printing

Number of Pages: 12
Number of Words: 3,926 (approx.)
Number of Characters: 22,382 (approx.)

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

