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Abstract— This paper presents new results to verify the
robust absolute stability property of the Lur’e systems.
As it is known, to solve the problem of robust absolute
stability, the strict positive realness property (SPR) of
a …ctitious transfer function needs to be veri…ed. In the
present work, a …ctitious transfer function with poly-
nomic parametric uncertainty is considered. To verify
the robust SPR property of this type of functions, an
algorithm, based on the sign decomposition technique,
is designed. This algorithm is codi…ed in C language
obtaining some advantages compared to others.

Keywords— Nonlinear systems, Lur’e systems, robust
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I. Introduction

The study of nonlinear systems represented by the
well known Lur’e systems has endured for many years.
This is due to the fact that the nonlinearities covered
by this type of systems appear in many practical pro-
cesses, see [15], [24], [3]. The Lur’e problem consists in
determining the asymptotic stability property of a non-
linear system which is a feedback connection of a linear
time invariant (LTI) system and a nonlinear element
that belongs to a sector [0; k]. The asymptotic stabil-
ity property of the equilibrium point for the previous
system is called absolute stability, [15].

Recently, uncertainty has been added to the linear
part of the Lur’e system. This was done because, in
practice, all systems present uncertainty in some of their
parameters. One of the …rst papers that deals with this
problem is [7], where the authors provide herein some
results to guarantee the robust absolute stability prop-
erty by verifying the strict positive realness of eight well
selected transfer functions from the uncertain linear sys-
tem. Another paper related to this topic is [9], here,
they generalize the Popov criterion for Lur’e systems
with an polynomic plant and a controller in the lin-
ear part; also see [21] for more comments on this issue.

However, others authors prefer to transform a nonlinear
control problem into a Lur’e problem to apply the ex-
isting tools to solve this type of problem, see [8]. Also,
there exist others papers that deal with this problem,
see [18],[26], [22], [20], [6], [16].

The present work addresses the analysis of absolute
stability of Lur’e systems with uncertainty in the linear
part as shown in the next …gure:
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Figure 1. Uncertain Lur’e system.

where Ã(t; y) is a memoryless nonlinear function that
satis…es the following condition:
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Figure 2. Nonlinear function inside a sector [0; k].

The nonlinear function must be contained in a region
called sector [0; k]. G(s; q) represents a transfer function
with polynomic parametric uncertainty that is de…ned
as follows:
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De…nition 1 ([2]) A polynomic plant is a transfer
function with parametric uncertainty that has the fol-
lowing structure:

G(s; q) =
n(s; q)

d(s; q)
=

Pm
i=0 ai (s; q) si

Pn
i=0 bi (s; q) si

(1)

8 q 2 Q

Where ai (q) and bi (q) are polynomic functions of
vectors q; Q is a set that represent the parametric un-
certainty and it is de…ned as follows:

Q ,
©
q=

£
q1 ¢ ¢ ¢ qn

¤
: q¡

i · qi · q+
i

ª

Without loss of generality, it will be assumed that
q¡
i ¸ 0. Nevertheless, if this condition is not satis-

…ed, it is always possible to make a linear transforma-
tion to make this condition hold. This type of set is
known as box by the way it is de…ned; the name of
polynomic plants is used because the coe¢cients of the
transfer function are uncertain values that have poly-
nomic structures. The absolute stability property when
the linear part has uncertainty is called robust abso-
lute stability and is satis…ed if the system, shown in the
…gure 1, is absolutely stable for all members of the in-
terval plant G(s; q). Therefore, the aim of this work is
to determine su¢cient conditions to verify the robust
absolute stability property of the Lur’e systems.

This paper is organized as follows: section II presents
some preliminary de…nitions and results. Then, in sec-
tion III, the main result is presented. And …nally, the
conclusions are provided in section IV.

II. Mathematical preliminaries and problem
statement

The concepts of robust strict positive realness and ro-
bust absolute stability are the basis of this paper, thus,
we elaborate on them next.

A. Strict positive realness

First of all, it is worth to mention that the strictly
positive real (SPR) transfer functions are an old con-
cept derived from electric network theory. These are
related to the network’s transfer functions when it has
dissipative elements like resistors, lossy inductors and
lossy capacitors. In order to introduce the de…nition
of SPR functions it is necessary to …rstly present the
de…nition of positive real (PR) functions:

De…nition 2 ([14]) A rational function G(s) of the
complex variable s = ¾ + j! is called positive real (PR)
if:

(i) G(s) is real for real s.
(ii) Re [G(s)] ¸ 0 for all Re [s] > 0

Now, it is possible to present the next de…nition:

De…nition 3 ([14]) Assume that G(s) is not identi-
cally zero for all s. Then G(s) is SPR if G(s ¡ ²) is PR
for some ² > 0.

The later is the de…nition of a SPR function. There
are some results to verify this de…nition, the most com-
mon is provided in the next theorem:

Theorem 4 ([14]) Assume that a rational function
G(s) of a complex variable s = ¾ + j! is real for all
real s and is not identically zero for all s. Let n¤ be
the relative degree of G(s) = n(s)=d(s) with j n¤ j· 1.
Then, G(s) is SPR if and only if:

(i) G(s) is analytic in Re [s] ¸ 0.
(ii) Re [G(j!)] > 0 8! 2 (¡1;1).
(iii) (a) When n¤ = 1; limj!j!1 !2 Re [G(j!)] > 0.

(b) When n¤ = ¡1; limj!j!1
G(j!)

j! > 0.

In the previous theorem it is clear that if the transfer
function G(s) has a relative degree (n¤) equal to zero
then the condition (iii) is not used. However, if the
relative degree is 1 or -1 then the (iii) condition must
be used. Nevertheless, in this regard, some comments
establish that, even if this condition is not satis…ed,
this does not imply that the network does not dissipate
energy, see [17].

Also, it is possible to verify the (ii) condition from
theorem 4 using the following ratio:

Re [G (j!)] =
1

2

n(j!)d(¡j!) + n (¡j!) d (j!)

j d (j!) j2

It is clear that the positivity of Re [G (j!)] can be
guaranteed with the following ratio:

Rp

¡
!2

¢
= n(j!)d(¡j!) + n (¡j!) d (j!) (2)

Thus, theorem 4 can be transformed into the follow-
ing theorem, see [25].

Theorem 5: A real rational function G (s) is SPR if
and only if:

(i) D (s) is stable.
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(ii) Rp (!) > 0 8! 2 (0;1).

Remark 6: It is worth to bring upon our attention the
following three things. First, the Rp (!) is the same that
Rp

¡
!2

¢
substituting !2 by !; and then the degree of

Rp (!) is n. Second, the ! interval in (ii) condition from
theorem 5 is reduced because the Rp (!) is a symmetric
function. And third, the (iii) condition from theorem
4 is included in the (ii) condition from theorem 5, for
more details see [25].

So far, we have settled the basis of SPR, now we may
continue to talk about robust SPR.

B. Robust strict positive realness

The previous de…nitions and results were obtained
for transfer functions without uncertainty. Neverthe-
less, the interest of this paper is on transfer function
with parametric uncertainty; specially, polynomic un-
certainty. The robust version of SPR property is de…ned
as follows:

De…nition 7: A polynomic plant is robustly SPR if
G (s; q) is SPR for all q 2 Q.

It is clear that the polynomic plant from (1) repre-
sents an in…nite number of transfer functions, and there-
fore the robust SPR property results impossible to be
veri…ed directly. However, the objective of this paper
is to …nd a method to verify this property using …nite
tests. Before introducing a …nding that helps to build
our main result, it is necessary to present the following
de…nition:

h
¡
!2; q

¢
= j d (j!; q) j2 (3)

g
¡
!2; q

¢
= Rp

¡
!2; q

¢

where:

Rp

¡
!2; q

¢
= n(j!; q)d(¡j!; q) + n (¡j!; q) d (j!; r)

It can be seen that the function h
¡
!2; q

¢
is a poly-

nomic function of ! with uncertain coe¢cients which
are again polynomic functions of qi in the vector q;
this is also true for Rp

¡
!2; q

¢
. Hence the next theorem

presents necessary and su¢cient conditions to verify the
robust SPR property, see [25].

Theorem 8 ([25]) A polynomic plant is robustly SPR
if and only if G (s; q) is stable for some q 2 Q and:

(i) h (!; q) is positive for all q 2 Q and ! 2 (0;1).
(ii) g (!; q) is positive for all q 2 Q and ! 2 (0;1).

As it can be noted, the problem of robust strict posi-
tive realness has been transformed into a problem where
the positivity of two multivariable polynomic functions
is veri…ed using the previous theorem. Hereupon our
goal is to verify the positivity of these functions using
some procedure, e.g. the sign decomposition technique.

C. Sign decomposition of multivariable polynomic func-
tions

This method analyzes the positivity of a multivari-
able real polynomic function by its decomposition into
his positive and negative parts, see [10]. The sign de-
composition is de…ned as follows:

De…nition 9 ([10]) Let f : Rn ! R be a continuos
function and Q ½ P ½ Rn a convex subset, f(¢) has
sign decomposition in Q if there exist two bounded non-
growing functions fn(¢) ¸ 0, fp(¢) ¸ 0,that f(q) =
fp(q) ¡ fn(q) for all q 2 Q. These functions will be
called positive part of the function fp(¢), and negative
part of the function fn(¢).

Here, the P set is considered to be a positive convex
cone; see [10]. Now, the maximum (vmax) and minimum
(vmin) vertices of the uncertainty set Q will be de…ned:

k vmin k2= min
q2Q

k q k2 (4)

k vmax k2= max
q2Q

k q k2

We can see that the vmin and vmax vertices are the
minimum and maximum Euclidean of the uncertain set
Q. The functions with sign decomposition have some
properties related to the vmin and vmax vertices; these
are presented in the next result:

Lemma 10 ([10]) Let f : Rn ! R be a continuos non-
growing function and let Q ½ P ½ Rn be a box with
minimum and maximum Euclidian vertices vmin, vmax,
then:

min
q2Q

f(q) = f(vmin); max
q2Q

f(q) = f(vmax) (5)

Based on this previous lemma it is now possible to
present the following relevant result:

Theorem 11 ([10]) Let f : Rn ! R be a continuos
function with sign decomposition in Q such Q ½ P ½
Rn is a box with minimum and maximum Euclidian ver-
tices vmin, vmax, then f (q) is lower and upper bounded
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by fp(vmin)¡fn(vmax) and fp(vmax)¡fn(vmin), respec-
tively.

From this result it is possible to determine if a func-
tion with sign decomposition is positive. This can be
veri…ed if ¹ = fp(vmin) ¡ fn(vmax) is greater than zero,
this is only a su¢cient condition, it is relaxed with the
following theorem.

Theorem 12 ([11]) Let f : Rn ! R be a continuos
function with sign decomposition in Q such Q ½ P ½
Rn is a box with minimum and maximum Euclidian
vertices vmin, vmax, then the function f (q) > 0 in Q
if and only if there exist some ¡j box sets, such that
Q =

[

j

¡j and ¹j = fp(v
j
min) ¡ fn(vj

max) are greater

than zero for each one ¡j .

A more general result of this theorem is presented in
[10], where a graphical version is included. However, for
the purpose of this paper we only need this simpli…ed
version.

D. Robust absolute stability

The result to verify the robust absolute stability of
the Lur’e system is presented in the following lemma:

Lemma 13 ([15],[25]) Consider the system from …g-
ure 1, where Ã(t; y) satis…es the sector [0; k] condition.
Then, the system presented in …gure 1 is robustly ab-
solutely stable if z(s; q) = 1 + kG(s; q) is SPR for all
q 2 Q.

It is important to note that this condition implies ver-
ifying the robust SPR condition of the …ctitious trans-
fer function z(s; q). Hence, the robust absolute stabil-
ity problem is transformed to determine if z(s; q) is ro-
bustly SPR.

Many research results related to SPR transfer func-
tions and robust SPR transfer functions have been pub-
lished. While some of these results discusses the design
and synthesis of robust SPR transfer function, see [4],
[5], [13], [1], others are related to the analysis of robust
SPR functions, see [19], [23]. The present work uses the
sign decomposition to analyze the robust SPR property
in order to get the results to verify the robust absolute
stability property of Lur’e systems.

III. Main Result

The main result is divided in three sections. The
…rst one contains some results to verify the robust SPR

property. The second part contains the su¢cient con-
ditions to verify the robust absolute property. And, the
last one, is an illustrative example where the results are
applied.

A. Robust SPR property

It was mentioned that the robust SPR condition of
transfer functions will be veri…ed using the sign decom-
position approach. However, it is important to mention
that this approach needs full knowledge of the low and
high boundaries of the uncertainty, and as it was seen in
theorem 8, ! is an unbounded parameter. Therefore, it
is necessary to make a previous special operation before
applying the sign decomposition method. This opera-
tion consists in determining the limits for the bound of
!. To do so we will de…ne the next function:

hmin (!) = hp

¡
!; q¡¢

¡ hn

¡
!; q+

¢
(6)

gmin (!) = gp

¡
!; q¡¢

¡ gn

¡
!; q+

¢

where hp (¢) ; hn (¢) ; gp (¢) and gn (¢) are the neg-
ative and positive parts of h (!; q) and g (!; q) re-
spectively, as it was de…ned in the de…nition 9; q¡ =£

q¡
1 ¢ ¢ ¢ q¡

m

¤T
and q+ =

£
q+
1 ¢ ¢ ¢ q+

m

¤T
. In

the previous de…nition it is clear that the next condi-
tions are satis…ed:

hmin (!) · h (!; q)

gmin (!) · g (!; q)

8 ! 2 (0;1) ; q 2 Q

and therefore if hmin (!) and gmin (!) are greater than
zero, also h (!; q) and g (!; q)will be greater than zero.
It is important to note that due to the shape of hmin (!)
and g (!; q) it is possible to set a minimum value !¡

and a maximum value !+ so that the functions may
take negative values an thus, the functions only have
the possibility of being negative for the value range of
! 2 [!¡; !+] for h (!; q) and [¿¡; ¿+] for g (!; q). This
in turn implies that h (!; q) and g (!; q) will only have
the possibility to be negative only when they are in-
side these intervals. This allows us to obtain the lim-
its we were looking for the ! parameter in both func-
tions. These values usually correspond to some roots
of hmin (!) and gmin (!) respectively, and can be gotten
graphically. With the limits of ! it is possible to de…ne
the following sets in order to use the sign decomposition
approach:
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V =
£
!¡; !+

¤
x Q (7)

U =
£
¿¡; ¿+

¤
x Q

Applying theorems 8 and 12, we can present the next
result.

Theorem 14: The polynomic plant from (1) is ro-
bustly SPR if and only if:

1. There exist some ¡j box sets, such that V =
S
j

¡j

and °j = hp(v
j
min) ¡ hn(vj

max) are greater than zero for
each one °j .
2. There exist some §j box sets, such that U =

S
j

§j

and ¾j = gp(u
j
min) ¡ gn(uj

max) are greater than zero for
each one ¾j .

for all v 2 V and u 2 U where V and U are the sets
de…ned in (7). This theorem can be applied to obtain
the robust SPR property using the following algorithm:

Step 1.- Set j = 1.
Step 2.- Let vj

min =
£

q¡
1 ¢ ¢ ¢ q¡

n

¤T
and vj

max =£
q+
1 ¢ ¢ ¢ q+

n

¤T
for each j.

Steo 3.- Compute °j for all j.
Step 4.- if °j > 0, then stop.
Step 5.- Divide the Q box into j smaller boxes and go
to step 2.

This procedure is simpler than that presented in [25].

B. Robust absolute stability

From lemma 13 it is seen that the condition to ensure
the robust absolute stability consists in determining if
the z(s; q) is a robust SPR transfer function. Addition-
ally, when the relative degree of the polynomic plant
G(s; q) is known to be equal to 1, we assume that the
z(s; q) is also a polynomic plant with relative degree
equal to zero. Then, it is possible to use the previous
result presented in theorem 14. Before presenting the
result, it is necessary to introduce the following de…ni-
tions:

z (s; q) =
´(s; q)

±(s; q)
(8)

® (!; q) = j ± (j!; q) j2 (9)

¯ (!; q) = ´(j!; q)±(¡j!; q) + ´ (¡j!; q) ± (j!; q)

The sets V and U are de…ned as in (7). Now, the
result of robust absolute stability with polynomic un-
certainty will be presented in the next theorem.

Theorem 15: Consider the nonlinear system from …g-
ure 1, where Ã(t; y) satis…es the sector [0; k] condi-
tion and z(s; q) = 1 + kG(s; q) = ´(s;q)

À(s;q) is analytic in
Re [s] ¸ 0. Then, the Lur’e system is robustly abso-
lutely stable if:

1. There exist some ¤j box sets, such that V =
S
j

¤j

and ¸j = ®p(v
j
min) ¡®n(vj

max) are greater than zero for
each one ¸j .
2. There exist some £j box sets, such that U =

S
j

£j

and µj = ¯p(u
j
min)¡¯n(uj

max) are greater than zero for
each one µj .

Now, we may use the previous algorithm to apply this
theorem.

C. Example

To illustrate the previous result, let us consider the
following polynomic plant, that was considered in [25]:

G(s; q) =
n (s; q)

d (s; q)

where:

n (s; q) = s3 +
¡
q2
1 + 2

¢
s2 +

¡
q2
2q1 + 4

¢
s + q1 + 3

d (s; q) = s3 + (q1 + 2) s2 +
¡
q2
2 + 2

¢
s + 1

Q = fq 2 Q : q1 2 [0; 1] ; q2 2 [0; 1]g
The h (!; q) and g (!; q) functions are as follows:

h(!; q) = hp(!; q) ¡ hn(!; q)

g(!; q) = gp(!; q) ¡ gn(!; q)

where the positive and negative parts of the h (!; q)
and g (!; q) functions are the following:

hp(!; q) = !3 + (q4
1 + 4q2

1)!
2 + (q2

1q
4
2 + 8q1q

2
2 + 4)!

+q2
1 + 6q1 + 9

hn(!; q) = (2q1q
2
2 + 4)!2 + (2q3

1 + 6q2
1 + 4q1)!

gp(!; q) = 2!3 +
¡
4q1 + 4q2

1 + 2q3
1

¢
!2

+
¡
8q2

2 + 4q1q
2
2 + 2q1q

4
2

¢
! + 2q1 + 6

gn(!; q) =
¡
2q2

2 + 2q1q
2
2 + 4

¢
!2 +

¡
4q2

1 + 10q1

¢
!
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Using the equations de…ned in (6) we get:

hmin(!) = !3 ¡ 6!2 ¡ 8! + 9

gmin (!) = 2!3 ¡ 6!2 ¡ 14! + 6

From these functions it is possible to get the in-
tervals [!¡; !+] = [0:7531; 6:9633] and [¿¡; ¿+] =
[0:3757; 4:4279]. And then the next sets.

V = [0:7531; 6:9633] x [0; 1] x [0; 1]

U = [0:3757; 4:4279] x [0; 1] x [0; 1]

Now, applying the theorem 14 through the algorithm
presented in section A, we can get the following result:

h(!; q) > 6:8673

g(!; q) > 0:8658

With this, we can conclude that the G (s; q) is ro-
bustly SPR. This result was gotten running the algo-
rithm presented in section A after the 8th iteration. It
is important to mention that the obtained values in [25]
are: 4:6532 and 0:8284 for h(!; q) and g(!; q) respec-
tively, which represents a more conservative result.

IV. Conclusions

This paper presented some results to verify the
robust absolute stability property for polynomic Lur’e
systems. These results were based on the sign decompo-
sition concept which enables to obtain a simpler test to
verify the robust stability property of a nonlinear sys-
tem than other previous results. Moreover, these results
can be easily programmed into a computer to get the
conditions. A future research problem can be to con-
sider a more general representation of the uncertainty
like nonlinear uncertainty.
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