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ABSTRACT 
A neuron can emit spikes in an irregular time basis and by averaging over a certain time window one 
would ignore a lot of information. It is known that in the context of fast information processing there is no 
sufficient time to sample an average firing rate of the spiking neurons.  The present work shows that the 
spiking neurons are capable of computing the radial basis functions by storing the relevant information in 
the neurons' delays. One of the fundamental findings of the this research also is that when using 
overlapping receptive fields to encode the data patterns it increases the network’s clustering capacity. The 
clustering algorithm that is discussed here is interesting from computer science and neuroscience point of 
view as well as from a perspective. 
 
 
1. Introduction 
 
Artificial neural networks (ANNs) whose 
functioning is inspired by some fundamental 
principles of real biological neural networks 
have proven to be a powerful computing 
paradigm.  Real biological neurons communicate 
through short pulses, called spikes, which 
terminate at different time rates. While firing, the 
firing rate is considered as the relevant 
information exchanged occasion between 
neurons,  where the analog inputs for an artificial 
neuron are usually interpreted as firing rates.  A 
spiking neuron is a simplified model of the 
biological neuron, however it is more realistic 
than a threshold gate (perceptron) or a sigmoidal 
gate. One reason for this is that in a network of 
spiking neurons the input, output and internal 
representation of information is more closely 
related to that of a biological network. This 
representation allows for time to be used as a 
computational resource and a correlation factor. 
It has been shown that such a network is 
computationally more powerful than a network 
of threshold or sigmoid gates; however learning 
algorithms for spiking neural networks are still 
lacking [1]. 
 
In order to understand the neural code we have to 
investigate the temporal structure of the spiking 
neurons [2-4], where neurobiological findings 
have confirmed such dependency and have 
shown that the sign and strength of the change 
depends on the timing of the two-spike systems 
[5,6].  

The importance of the timing of the first spike 
has been discussed by many authors in which 
they were able to show that humans can process 
visual patterns in 150 ms [7]. Within this time it 
is hard to imagine that the neurons may sample 
firing rates, since there are only about 10 
synaptic stages involved. Neurons participating 
in such computations usually have a firing rate of 
less than 100 Hz hence 10 ms were not sufficient 
to estimate the current firing rate of some spiking 
neuron [8]. To use a population code, one would 
need a huge amount of neurons to encode 
reliably sufficiently many variables. 
 
So far there is no much information known about 
the possible computational mechanisms on the 
basis of the timing of single spikes. Some 
fundamental results have been provided by 
Maass in which he characterized the 
computational power of SNNs and showed how 
the timing of spikes can be used to simulate 
sigmoidal gates with SNNs [9,10]. 
 
On the basis of these principles we show how 
methods originally designed for artificial neural 
networks like competitive learning, self-
organizing behavior and radial basis functions 
(RBF) can be realized within this context. 
 
2. Classification of Neurons’ 
Encodes 
 
One can classify how neurons encode 
information essentially by three different 



 

approaches: the first is the rate coding where the 
essential information is encoded in the firing 
rates and averaged over time or over several 
repetitions of the event.  The second is the 
temporal coding, where the timing of single 
spikes is used to encode information.  And the 
third is the population coding, where information 
can be distinguished by the activity of different 
populations of neurons where a neuron may 
participate at several pools. 
 
In the present study we will focus on the 
temporal coding in which relevant information 
could be represented.  In this context we consider 
the firing rates of neurons relative to the stimulus 
onset such that the closer a neuron fires to the 
onset the stronger the stimulation can take effect 
[11]. Hence only the first spike of a neuron 
carries relevant information. One might also 
assume that a neuron is shut off by some 
additional inhibitory input after its firing. 
Similarly one can assume that information is 
encoded relative to the firing times of other 
neurons [12,13].  Which means that we have to 
inherit a correlation factor between the spiking 
neurons as considered one of the novel ideas of 
the current paper. 
 
2.1 Mathematical Model for 
Temporal Neural 
 
The state of neuron j is described by the variable 
hj(t), which models the neuron’s membrane 
potential (Excitatory Post Synaptic Potential-
ESPS) at time t. A spike is generated whenever 
hj(t) crosses the threshold and 

},,,{ 321 Kjjjj tttF = is the set of firing times of 
neuron j.  We can model the effect of an 
incoming spike on the ESPS by 
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where δ is the post time to the spike effect and τ 
is the time to the peak of the post synaptic 
reaction. 
 
When the neuron j receives an input from a set of 
neurons marked as Γj, the membrane potential 
becomes the weighted sum of EPSP’s caused by 
the neurons from Γj.  In this case  
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where wij is the synaptic efficiency (i.e., weights) 
between neurons i and j, dij is the delay from the 
occurrence of a spike in neuron j and the 
beginning of its effect on neuron i and )( ij

k
j dt +  

is the time when the kth spike from neuron j 
started affecting neuron i. 
 
Throughout the present work we stress on the 
fact that the synaptic efficiency is the only 
learnable parameter that is of interest to us to 
investigate. 
 
2.2 NNS Architecture and Data 
Temporal Encoding 
 
Assume that m-dimensional input patterns 
(x1,...,xm) are encoded with sensory neurons  
u1,...,um which are the constituents of the network 
inputs of an n-dimensional output neurons 
(v1,...,vm) (see Figure 1). In the simplest case 
each input neuron ui forms one synaptic 
connection to each RBF neuron vj with weight 
wij and delay dij. 
 
In the present study we consider a coding 
scheme where each input neuron ui fires exactly 
once at time ti during the coding interval 

)](,[ iti tt +δ , i.e., with tδ  is a constant time 
step. The input is encoded relative to the first 
spike in the coding interval so that explicit 
reference spike is not necessary. We will denote 
an input vector for this type of coding with x that 
is defined by the vector 
 

mxx ,,x K1=  (3) 
where 

{ } iii tmitx   -  1  ≤≤= |max (4). 
 
We can define the center of an RBF neuron 
(which is symmetric around the centre) cj by the 
vector 

mjjj cc ,,,c K= (5) 
where 

{ } 1|  min, middc imimmj ≤≤−=  (6) 
 

Assuming that the RBF neuron vj is associated 
with a m-dimensional vector 
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Figure 1.  The SNN Encoding architecture 
 
 

the m-dimensional vector as the synaptic weights 
of the neuron. Each coordinate in c

jµ  is a 
weighted average of the delays from the 
matching input coordinate, i.e., 
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The active synapse from jµ  will be the one 

whose delay is c
jµ  as 
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The center of such a neuron is mirror image of 

c
jµ  and the response time to input patterns is 

symmetric around that center so that this neuron 
realizes a RBF.  For example, if )7,4,1(=c

jµ , 
vj’s center be (6,3,0).  
 
In Figure 1, each connection from a sensory 
neuron to an RBF neuron consists of D synapses 
with delays 1,..., D (the marked gray area 
between ui and vj).  Each sensory neuron emits 

exactly one spike when the pattern is exposed to 
the network. The spike from uj is delayed by xj in 
milliseconds. For example, the 3-dimensional 
input (3,7,1) will be coded by u1 firing after 3 
ms, u2 firing after 7 ms and u3 firing after 1 ms. 
Inhibiting synapses between all of the activated 
RBF neurons when they fire will implement a 
winner-take-all-mechanism to allow only one 
RBF neuron to respond to each pattern. 
 
For each pair of sensory neuron ui that is 
connected to a single layer of n spiking neurons 
and RBF neuron vj, there exist a set of D 
independent synapses. Taking into account the 
multiple synapses and constant delays, the 
weights of these synapses are )1(

ijw , )2(
ijw ,... )(D

ijw  
and the delays are 1 ms, 2 ms, ... and D ms, 
respectively. In this case hj(t) is redefined as 
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The input x is close to the center cj of an RBF 
neuron vj if the spikes of the input neurons reach 
the soma of vj due to the corresponding delays at 
similar times, i.e., if ||cx|| j− is small.  This is 
basically a parallel approach to that was 
introduced by Hopfield in 1995 in which he 
considered the case where the input vector is 
close enough to the center of an RBF neuron to 
make vj fire [14].   
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Figure 2: Dependence of the firing time of an 
RBF neuron vj 

 
 

If the distance between x and vj is too large, vj 
does not fire at all. If for some input vector x the 
difference ||cx|| j−  is small enough for various 
j to make vj to fire then the RBF neuron whose 
center is closest to x fires first. In this case a set 



 

of such RBF neurons can be used to separate 
inputs into various clusters. 
 
Figure 2, shows the dependence of the firing 
time of an RBF neuron vj on the distance of the 
input vector x to the center cj.  For this 
simulation 1200 uniformly distributed inputs 

[ ]120030 0 ms,x∈ are presented to vj with equal 
weights and delays uniformly distributed over 
[ ]ms30 0, . Crosses indicate the case that the RBF 
neuron has not fired. (RBF++ Reference) 
 
The delays between spikes in such an input 
pattern will be evened out by the delays in the 
synapses causing vj to react to the all incoming 
spikes at the same time. When comparing the 
reaction of vj to an input pattern which is at its 
center and an input pattern which is slightly off 
its center we find that the first pattern causes a 
higher peak in vj’s membrane potential and the 
membrane potential crosses the threshold earlier. 
 
3. Learning RBF and Clustering 

with Temporal Neurons 
 
The learning goal of the network is to have one 
RBF neuron related to each cluster so that when 
an input pattern from that cluster is exposed to 
the network, only the related neuron will fire. 
Since we have inhibitory synapses between the 
neurons, it is enough that the correct neuron will 
fire first. In order to achieve that, the weights of 
the spiking neurons will be shifted during 
learning so that they will be able to realize RBFs 
whose centers are the centers of the clusters. 
 
The learning rule (which is a variant of the Hebb 
law) is applied to the synaptic weights of the 
neuron that is fired when the input is fed to the 
network. Synapses which contributed to the 
neuron’s firing are strengthened and synapses 
which did not contribute are weakened. The 
synapses that contributed are those who started 
affecting the postsynaptic neuron (taking into 
account the synaptic delay) slightly before the 
neuron actually crossed the threshold.  The 
change in the synaptic weight is given by the 
following learning rule 
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where η determines the learning rate. 
 

The learning function will have the form 
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where b is the minimal value, c is the location of 
the peak, β is the width of the distribution.   
 
We found out that with time difference of 
exactly c ms between the spikes causes maximal 
strengthening of the synaptic weight up to the 
width of the distribution (higher or lower) causes 
a smaller strengthening and weakens the synaptic 
weight.  This is a very good result that guided us 
to the best resonance value for the system 
parameters.  With the use of this above model 
data is successfully clustered with results similar 
to [15].  
 
4. Input Encoding with 

Receptive Fields 
 
In order to encode the sensory input neurons we 
should look for an efficient encoding technique. 
Sensory input in live organisms are often 
encoded with overlapping receptive fields, for 
example touching the skin at a certain area may 
cause several sensory neurons to fire at different 
rates. This technique is used to encode input 
patterns so that it is possible to successfully 
cluster more complicated data sets. 
 
When using receptive fields, input is not encoded 
by using just one sensory neuron for each data 
coordinate. Instead for each coordinate, several 
receptive field neurons are used to encode the 
data. Each of the receptive fields fires with a 
short delay if the value of that coordinate is close 
to its center and with a longer delay for values 
farther from the center.  And it does not fire at all 
if the value is too far from the center. The centers 
of the receptive fields are evenly distributed 
within the possible range of values. 
 
When a pattern is introduced to the system each 
receptive field calculates the value of a gaussian 
function and value of the input at the coordinate 
will correlate with each other. The gaussian 
function for each receptive field is given by 
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where γ is the width of the receptive field 



 

γ = βrf  M/(y-2) (13) 
 

with M being the maximal value of the input, y 
the number of receptive fields and βrf a 
parameter. 
 
5. Model Implementation 

 
The model was implemented by C++ using the 
three classes ReceptiveFiled, RBFneuron and 
Network Parameters’ Monitoring.  The algorithm 
contains main three modules.  The first one is 
data set file creation module, the second is data 
set file testing module and the third one is the 
distance from the centre, response time testing 
and running module. 
 
The results can appear in a different folder in an 
ascii format and the weights of the RBF neurons 
before and after learning are recorded in a 
different ascii file. 
 
Before running the algorithm code some pre-set 
definitions and values for key parameters should 
be assigned.  Those values are: 
• Maximal weight value, The maximal weight 

is calculated so that after learning the active 
synapses that are left have enough weight to 
cause the RBF neurons to fire. There is also a 
minimal weight which is set to zero in which 
no inhibitory synapses are allowed. 

• Saturation function that is needed in order to 
keep the weights within the realistic range 
[0,wmax].  This function causes the synaptic 
weight to change at a slower rate when close 
to 0 or γmax. 

• Initial weight value where the weights are 
initiated randomly but they must be high 
enough to cause some neuron to fire for every 
pattern and low enough so that all the input 
spikes are necessary in order to cause a RBF 
neuron to fire. If not all input spike are 
necessary a partial pattern will be learned and 
several clusters with a common sub-pattern 
will be identified by one of the neurons. 

 
6. Results and Conclusion 
Throughout this work we incorporated receptive 
fields along with the distance from the center 
versus the firing time function of the RBF 
neurons under test. A single spiking neuron with 
one active synapse from each sensory neuron is 
stimulated with different input patterns and the 
time of firing is measured and compared to the 
distance of the patterns from the neuron’s center. 

Figure 3 shows the results of this run, in which 
the spike time is measured relative to the 
minimal response time. Spike time “-1” indicates 
that the neuron did not fire as a result of that 
pattern. 
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Figure 3:  firing time of the RBF neurons 
versus distance of the input patterns from the 

RBF center. 
 
The value of the gaussian (between 0 and 1) is 
normalized to a value less than 1 and the result is 
multiplied by the maximal delay to the delay of 
the receptive field to that input. If the value of 
the gaussian is too low no spike will be emitted 
by that receptive field.  In Figure 4, The vertical 
line indicates an input which causes three 
receptive fields to fire, the central receptive field 
will fire almost immediately and the ones to its 
left and right will fire after a longer delay of 
value 80% and 90% of the maximal delay. 
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In table 1 we shows the results for different data 
sets.  We run the algorithm for different values 
of dimensions for the data sets.  It shows very 
promising results in terms of the standard 
deviation relative to the number of data points. 
 
In Figure 5 we shows the relation for the first 
row of the table, and it is obvious that it gives a 



 

very good results to discriminate and cluster data 
points in a very small response time. 
 
Table 1:  Data Set Parameters used for NNS 

Model Testing 
 
Dimension # of 

Clusters 
Range 

ms 
Std 
ms 

# of 
patterns 

2 20 0 - 30 0.2 2600 
10 20 0 - 30 0.22 3000 
20 20 0 - 30 0.23 3500 
40 20 0 - 30 0.24 2800 
60 20 0 - 30 0.26 4000 
80 20 0 - 30 0.28 4000 

4-Iris data 12   1000 
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Figure 5: Plot of the 2-dimensional data set 
results for the NNS testing. 

 
In all the simulations 30% of the data was used 
for learning. Testing was performed on the full 
data sets.  In the artificial data sets 100% correct 
classification was achieved. In the iris data set 
over 95% success was achieved.  
 
So we can see that spiking neurons, receiving 
temporally encoded inputs can compute radial 
basis function to an excellent accuracy.  This is 
feasible via sorting the relevant information in 
their delays.  In the current study we showed 
how our models introduced excellent results with 
more simpler buildup than the previous studies. 
 
7. Future Work 
 
Currently we are studying applying this 
technique to more NNS application oriented 
problems.  Of main interest to us to benefit from 
the short time convergence into correct 
clustering and very small standard deviation.  
Namely applying this for intrusion detection 
systems as extensions to our previous efforts in 
that field [16,17]. 
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