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Abstract: - The cornerstone of the theory of discrete-space linear systems is the idea that every such system
has an input-output map H that can be represented by a convolution sum or the familiar generalization of a
convolution sum. This thinking involves an oversight which, for the case of bounded inputs mapped continuously
into bounded outputs, was recently corrected by adding an additional term to the representation. Here we give
a necessary and sufficient condition under which the additional term vanishes. The condition provides the basis
for some related material given concerning engineering education and introductory courses in the area of signals
and systems.
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1 Introduction

In the signal-processing literature, x(α) typically
denotes a function. In the following we distinguish
between a function x and x(α), the latter meaning
the value of x at the point (or time) α. Sometimes a
function x is denoted by x(·), and also we use Hx to
mean H(x). This notation is often useful in studies
of systems in which signals are transformed into other
signals.

The cornerstone of the theory of discrete-time
single-input single-output linear systems is the idea
that every such system has an input-output map H
that can be represented by an expression of the form

(Hx)(n) =
∞∑

m=−∞
h(n, m)x(m) (1)

in which x is the input and h is the system func-
tion associated with H in a certain familiar way. It is
widely known that this, and a corresponding represen-
tation for time-invariant systems in which h(n, m) is
replaced with h(n−m), are discussed in many books.
Almost always it is emphasized that these representa-
tions hold for all linear input-output maps H. In [1]
we direct attention to the fact that such statements
are in error and we give a correct representation in
which an additional term is added to the right side of
(1).1 This writer does not claim that H’s for which
the additional term is needed are necessarily of im-
portance in applications, but he does feel that their

1It appears that as early as 1932 Banach was aware of the
lack of existence of generalized convolution-sum representations
for certain linear system maps (see [2, pp. 158, 159]). For fur-
ther material concerning discrete-time systems, in the context
of the theory of conjugate spaces, see e.g., [3, p. 228, Table
1 and p. 229, Exercise 9]. Also, in [4, p. 1159] attention
is directed to material in [5, p. 58] which shows that certain
time-invariant H’s do not have convolution representations.

existence shows that the analytical ideas in the books
are flawed.2

More specifically, it is shown in [1] that

(Hx)(n) =
∞∑

m=−∞
h(n, m)x(m) + lim

k→∞
(HEkx)(n)

for each n, in which h has the same meaning as in (1),
and Ekx denotes the function given by (Ekx)(m) =
x(m) for |m| > k and (Ekx)(m) = 0 otherwise. This
holds whenever the input set is the set of bounded
functions, the outputs are bounded, and H is con-
tinuous (with respect to the usual sup norm). In
particular, we see that in this setting, an H has a
representation of the form given by (1) if and only if

lim
k→∞

(HEkx)(n) = 0 (2)

for all x and n. Since this is typically a very reasonable
condition for a system map H to satisfy, it is clear that
the H’s that cannot be represented using just (1) are
rather special.

The main result in [1] is actually more general in
that H’s are addressed for which inputs and outputs
depend on an arbitrary finite number of variables.
This case is of interest in connection with, for ex-
ample, image processing. Also considered are H’s for
which inputs and outputs are defined on just the non-
negative integers because that case too arises often in
applications. In that setting the situation with regard
to the need for an additional term in the represen-
tation is different: no additional term is needed for
causal maps H. Here, in Section 2.2, we show that
the key condition (2) can be replaced with a condition

2As described in Section 2.3, the oversight in the books is
due to the lack of validity of the interchange of the order of
performing a certain infinite sum and then applying (H · )(n).



of the form

(Hx)(n) = lim
k→∞

(HQkx)(n)

for all x and n, where Qk is a simple windowing map.
This condition appears to be more palatable to stu-
dents in introductory courses in the area of signals
and systems. Section 2.3 contains some related com-
ments concerning earlier work and engineering edu-
cation. Throughout Section 2, we address the case
in which inputs and outputs depend on an arbitrary
finite number of variables.

2 The Equivalent Condition

2.1. Preliminaries
Let D denote either Zd or Zd

+ where d is a positive
integer, Z is the set of all integers, and Z+ is the
set of nonnegative integers. We use �∞(D) to denote
the normed linear space of bounded complex-valued
functions x defined on D with the norm ‖ · ‖ given by
‖x‖ = supα∈D |x(α)|.

For each positive integer k, let ck stand for the dis-
crete hypercube {α ∈ D : |αj | ≤ k ∀j} ( αj is the
jth component of α), and let �1(D) denote the set of
complex-valued maps g on D such that

sup
k

∑

β ∈ ck

|g(β)| < ∞.

For each g ∈ �1(D) the sum
∑

β ∈ ck
g(β) converges to

a finite limit as k → ∞, and we denote this limit by∑
β ∈D g(β).

2.2. Main Result
Define maps Qk and Ek from �∞(D) into itself by

(Qkx)(α) = x(α), α ∈ ck and (Qkx)(α) = 0 other-
wise, and (Ekx)(α) = x(α), α /∈ ck and (Ekx)(α) = 0
otherwise.

Let H be the set of all continuous linear maps from
�∞(D) into itself. For each H ∈ H define h on D×D
by h(·, β) = Hδβ for β ∈ D, where (δβ)(α) = 1 for
α = β and (δβ)(α) is zero otherwise. Of course h(·, β)
is the response of H to a unit “impulse” occurring at
α = β.

We say that H ∈ H belongs to H0 if h(α, ·) ∈ �1(D)
for each α ∈ D and

(Hx)(α) =
∑

β ∈D

h(α, β)x(β), α ∈ D (3)

for x ∈ �∞(D). As indicated in the Introduction, it is
known that H0 is a proper subset of H.

Theorem : An element of H belongs to H0 if and
only if

(Hx)(α) = lim
k→∞

(HQkx)(α), α ∈ D (4)

for all x ∈ �∞(D).

Proof:
We will use the following result (see [1]).

Lemma: Let H ∈ H, α ∈ D, and x ∈ �∞(D). Then

(i) g defined on D by g(β) = h(α, β)x(β) belongs to
�1(D).

(ii) limk→∞(HEkx)(α) exists and is finite.

(iii) We have

(Hx)(α) =
∑

β ∈D

h(α, β)x(β) + lim
k→∞

(HEkx)(α).

Returning to the proof of the theorem, let H ∈ H
satisfy (4). Using (i) of the lemma, and with x(β) = 1
for all β, h(α, ·) ∈ �1(D) for each α. By (iii) of the
lemma,

(Hx)(α) = lim
k→∞

(HQkx)(α)

= lim
k→∞

∑

β ∈D

h(α, β)(Qkx)(β)+ lim
k→∞

lim
p→∞

(HEpQkx)(α)

(for each α and each x), in which the iterated
limit on the extreme right side is zero, because
limp→∞(HEpQkx)(α) is zero for each k. Also,

lim
k→∞

∑

β ∈D

h(α, β)(Qkx)(β) = lim
k→∞

∑

β ∈ ck

h(α, β)x(β)

=
∑

β ∈D

h(α, β)x(β) (5)

in which we have used the observation that each qα de-
fined on D by qα(β) = h(α, β)x(β) belongs to �1(D).
This shows that H ∈ H0. Conversely, if H ∈ H0, (5)
with the order of the three terms reversed holds for all
α and x, showing that H satisfies (4). This completes
the proof.

2.3. Comments
It is clear that h(α, β) = h(α − β, 0) for shift-

invariant maps H ∈ H. If H1 and H2 are shift-
invariant elements of H that do not belong to H0,
it can happen that H1H2 �= H2H1 (i.e., that H1 and
H2 do not commute; see [6]).

Condition (4) has the interpretation that H is “my-
opic” in the sense that for each x and each α the value
of (Hx)(α) must be (roughly speaking) relatively in-
dependent of the values of x at points remote from α.
In this connection, it is shown in [4] that discrete-time
single-input single-output shift-invariant causal maps
have convolution-sum representations if and only if
they possess fading memory. Fading memory in the
sense of [4] is a comparatively more complicated con-
cept. However, our theorem shows that for the maps
considered in (4), and assuming they are continuous,
the fading memory condition is equivalent to the con-
dition that (4) is met. And for these causal maps, Qk

in (4) can be replaced with Qk,α defined for −k < α
by (Qk,αx)(β) = x(β), β ∈ {−k,−k + 1, . . . , α} and
(Qk,αx)(β) = 0 otherwise. We use the term “myopic”
in our interpretation of (4) because the term “fading-
memory” is inappropriate when applied to noncausal
systems, in that noncausal systems may anticipate as
well as remember.



Using a version of the dominated convergence the-
orem, it is not difficult to modify the proof of our the-
orem to show that Qk in (4) can be defined instead
by

(Qkx)(α) = qk(α)x(α), α ∈ D

where the functions qk belong to �∞(D) with unit
norm and satisfy limk→∞ qk(α) = 1 for each α, as
well as ‖Epqk‖ → 0 as p → ∞.

For any H ∈ H ∩H0 one has
∑

β ∈D

|h(α, β)| ≤ ‖H‖

for all α, where ‖H‖ is the induced norm of H. This
(essentially well-known fact) follows from the inequal-
ity ‖Hx‖ ≤ ‖H‖ for ‖x‖ = 1 and a simple argument
by contradiction.

We note that (4) is met if D = Zd
+ and H is

“ξ-anticipative,” by which we mean that there is a
nonnegative number ξ such that for each α we have
(Hx)(α) independent of x(β) for βj > αj + ξ ∀j.
In particular, (4) is satisfied when D = Zd

+ and H is
causal (i.e., is 0-anticipative). However, with D = Zd

+

and H not necessarily causal, it can happen that (4)
is not met, even with d = 1.

The theorem provides conditions under which the
conclusion of a familiar short engineering argument of
long standing can be justified. That argument, which
is often taught to students and which concerns the
representation of linear discrete-time or discrete-space
shift-invariant systems, proceeds as follows (using our
notation). Let H be the input-output map of such a
system, and let X be the family of all possible input
functions – assumed only to be complex-valued, and
defined on Zd. Typically, d = 1. One writes

x(α) =
∑

β ∈Zd

δ(α − β)x(β) (6)

for any input x, in which δ is the usual discrete unit
impulse function. Noting (6), and appealing to the
linearity and shift-invariance of H, one is said to have

Hx = H
∑

β ∈Zd

δ(· − β)x(β) =
∑

β ∈Zd

Hδ(· − β)x(β)

(7)
in which Hδ(·−β) is h(·−β), where h is the system’s
impulse response Hδ. Thus, one concludes that

(Hx)(α) =
∑

β ∈Zd

h(α − β)x(β) (8)

for all x ∈ X. In particular, one concludes that the
input-output properties of H are completely defined
by its impulse response. As indicated in the Intro-
duction, this conclusion is now known to be incorrect.
The main problem with the argument just described
is that the interchange of the order of summation and
operation by H in (7) is in fact not justified by merely
the linearity of H. Linearity (in particular, the super-
position part of linearity) concerns H operating on
finite sums, not infinite sums 3.

3It is known [7] that what might be called“infinite superpo-
sition” can fail.

The engineering argument we have described is
sometimes slightly modified to address system maps
H that are not necessarily shift invariant, and the
well-known conclusion is that the corresponding rep-
resentation takes the form

(Hx)(α) =
∑

β ∈Zd

h(α, β)x(β). (9)

This is (8) with h(α − β) replaced with some h(α, β)
and, as is well known, h(α, β) is interpreted to be the
response of H at the point (or time) α to an impulse
applied at the point (or time) β. Our theorem shows
that (9) is valid for the important family of �∞(D)
inputs, under the assumption that H satisfies certain
continuity and mapping conditions, and a certain key
limit condition.

With regard to engineering education, and intro-
ductory courses in the area of signals and systems,
our theorem provides the following outline of a re-
vised argument that yields (9). We have

x(α) =
∑

β ∈Zd

δ(α − β)x(β) (10)

and so
Hx = H

∑

β ∈Zd

δ(· − β)x(β).

Using the linearity of H, and under the additional
assumptions that the input set X is �∞(D), that all
outputs belong to �∞(D), that H is continuous, and
that condition (4) is met, the order of performing the
summation and operating by H can be shown to be
able to be interchanged, yielding

Hx =
∑

β ∈Zd

Hδ(· − β)x(β).

And with h given by h(α, β) = [Hδ(· − β)](α), this
becomes (9). Related outlines have been given con-
cerning shift-invariant H’s in continuous-space input
settings (see e.g., [8] and [9]).

2.4. Conclusion
The cornerstone of the theory of discrete-space lin-

ear systems is the idea that every such system has
an input-output map H that can be represented by
a convolution sum or the familiar generalization of a
convolution sum. This thinking involves an oversight
which, for the case of bounded inputs mapped contin-
uously into bounded outputs, was recently corrected
by adding an additional term to the representation.
We have given a necessary and sufficient condition
under which the additional term vanishes. The con-
dition has provided the basis for some related material
given concerning engineering education and introduc-
tory courses in the area of signals and systems.
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