
Automated Test Case Generation from IFAD VDM++ Specifications

AAMER NADEEM, MUHAMMAD JAFFAR-UR-REHMAN
Center for Software Dependability
Mohammad Ali Jinnah University

74-E, Blue Area, Islamabad
PAKISTAN

Abstract: - Most of the current research on
automatic generation of test cases from formal
specifications has been directed towards non
object-oriented formal specifications. While object-
oriented paradigm is the most widely accepted
methodology for software development, generation
of test cases from object-oriented formal
specifications is still a relatively unexplored area.
In this paper, we present a novel framework to
automate test case generation from object-oriented
formal specifications. We use IFAD VDM++ as the
specification language, but the ideas presented can
be generalized to other model-based object-
oriented formal notations as well. The proposed
approach uses a test descriptor to generate valid test
sequences, and then generates test data for each
method in a test sequence, using a conjunction of
method precondition and class invariant to filter the
input space. The test data are generated by
partitioning the valid input space for each input
variable into equivalence classes, and selecting
representative values from each class.

Key-Words: - Formal methods, Object-oriented
specification, Software testing, Specification-based
testing, Automated testing

1 Introduction
Use of formal methods in early phases of software
life cycle can help avoid specification errors and
ambiguities. Unlike a natural language
specification for the system, the precision of a
formal specification eliminates ambiguities and
misinterpretations. Another advantage of using a
formal specification is that aspects of the
specification can be rigorously demonstrated using
mathematical proofs. However, use of formal
methods does not guarantee that implementation
will conform to specifications. A formal proof of
correctness is not justifiable for most software
projects because of the cost involved. Even after a
formal proof, testing is usually required to build
confidence in the system being developed [10].
Therefore, need for rigorous testing is not
eliminated by the use of formal methods. In fact,
formal methods and testing complement each other.

However, even for the most trivial systems,
exhaustive testing is impossible due to the
explosive size of input space, which makes it
necessary to find ways to identify a representative
set of test cases. For large and complex software
systems, manually generating such a set of test
cases, executing them, and comparing the results
with expected outputs can be a tedious and time-
consuming process. Fortunately, testing from
formal specifications can be automated: several
researchers have proposed techniques for automatic
generation of test cases from formal specifications
[10] [3] [13] [1] [5].

Over the past decade, object-oriented paradigm
has emerged as a promising methodology for
software development. It has provided several
desirable characteristics, such as abstraction and
encapsulation. Abstraction allows modeling of real-
world objects and their properties. The physical
properties of objects can be captured as attributes
and their interactions as routines that may be
performed on the attributes. Encapsulation restricts
the users to only using the defined routines to
access the attributes of the object, thus reducing the
likelihood of inappropriate usage of the object.

During past fifteen years, considerable amount
of research effort has been directed towards object-
oriented analysis and design methodologies for
developing software systems. However, testing of
object-oriented systems has received relatively
much less attention. In particular, little work has
been done in the area of developing software
testing techniques using object-oriented formal
specifications. Though it is theoretically possible to
continue using the traditional testing strategies for
object-oriented systems, exploiting the object-
orientation features of the software can help
develop better testing methods. Thus, there is a
need to investigate methods to automate testing
from object-oriented formal specifications.

In this paper, we present a technique to automate
generation of test cases from IFAD VDM++ [7]
specifications. Our proposed approach can be
generalized to other object-oriented formal
notations as well.

The proposed technique requires a VDM++
specification, and a test descriptor, to generate the

test cases. The test descriptor defines valid test
sequences in an intermediate specification language
based on regular expressions.

The rest of this paper is organized as follows:
section 2 surveys related work by other researchers;
section 3 describes our proposed technique in
detail; and finally section 4 concludes the work.

2 Related Work
Various techniques have been proposed to
automatically generate test cases from formal
specifications. However, most of the research has
been directed towards testing from non object-
oriented formal specifications.

In [3], a methodology is proposed to convert
VDM-SL pre condition expressions into a
disjunctive normal form (DNF), so that a solution
to each disjunct represents a solution to the entire
expression. The state space generated by pre
conditions is exhaustively searched using Prolog to
generate test cases. In [5], the authors describe the
use of a theorem prover tool Isabelle to automate
generation of test cases from Z specifications
encoded in Isabelle/HOL. The tool converts Z
predicates to DNF, eliminates unsatisfiable
disjuncts, and generates valid test cases by
searching the state space.

In [10], a method is proposed to generate test
cases from VDM-SL specifications by converting
the pre and post condition expressions into DNF,
partitioning the DNF into equivalence classes and
using boundary value analysis to generate test cases
from the equivalence classes. The approach is
based on parsing VDM-SL expressions, and is
implemented in [1].

[6] gives an overview of testing based on Z, and
proposes transforming Z operation schemas to DNF
to generate test cases, but emphasizes the need to
automate test evaluation because of the vast
amount of data to be processed. [11] describes a
test evaluation tool to support automatic test
evaluation, by transforming schema predicates into
executable forms which are compiled to boolean-
valued C functions.

All of the above-mentioned works focus on
testing from non object-oriented formal
specifications. Testing from object-oriented formal
specifications is still a largely unexplored area. [9]
have proposed a framework to automate class
testing from Object Z specification. Their work is
based on generating a valid input space (VIS) for

class methods, and applying a strategy on VIS to
generate test data. Valid sequences of execution of
methods are determined by constructing a finite
state machine (FSM) for the class under test.
However, the framework proposed in [9] has not
been implemented.

Another notable work among test generation
frameworks for object-oriented formal
specifications is the one presented in [2]. They
present a framework, Korat, that uses Java
Modeling Language (JML) predicates to generate
input space, and a Finitization class to bound the
input state space. The bounded state space is
searched and invalid objects, that do not satisfy a
repOk method, are discarded. The repOK() method
returns true if an object of the class under test is
correctly represented, otherwise it returns false.
The authors have implemented their proposed
framework, and have shown it to be efficient and
effective, but its main limitation is that it is Java-
specific.

3 Architecture of the Test Case
Generator
The Test Case Generator (TCG) consists of two
main components (Fig. 1), i.e.

a. predicate parser, and
b. test generator

It requires a VDM++ specification, and a test

descriptor. The predicate parser generates C code
for method predicates formed by conjunction of
method precondition and class invariant, which is
used to filter the test data. The parser also creates a
symbol table for the method predicates, which
records variable names and their boundary values.
The symbol table is used by test generator to
generate test data.

The test generator also generates empty test
shells from the test descriptor, which are then filled
with test data. The test descriptor is an XML file
that contains valid sequences of operations defined
as regular expressions. The test data are generated
from the symbol table by partitioning the input
space into equivalence classes, and filtered by
method precondition and class invariant.

In the following subsections, we describe
functionality of each component of the TCG.

Predicate
Parser

VDM++
Specification

Test
Cases

Test
Descriptor

Symbol
Table

Test
Generator

Generated
Code

Fig. 1. Architecture of the Test Case Generator (TCG)

3.1 Parser
The specification of an object class in VDM++
contains a class invariant predicate, and method pre
and post conditions for each method in the class.
The parser constructs a method predicate for each
method by forming a conjunction of class invariant

and method precondition predicates. The method
predicate is parsed into a parse tree using a context-
free grammar (CFG). A context-free grammar for a
simple IFAD VDM++ expression is given in Fig. 2
below.

 Nonterminal symbols: Expr, Simple-Expr, Quant-Expr,

Implies-Expr, Q-Opr, Or-Expr, And-Expr, Not-Expr, Clause,
Rel-Expr, Num-Expr, Set-Expr, Set-Mem, Num, Rel-Opr, Set,
Set-Opr, Set-Literal, Elem, Elem-List, Set-Imp

Terminal symbols: ⇔, • , ∀ , ∃ , !, ⇒ , ∨ , ∧ , ¬ , (,), Var, Literal,
=, ≠, <, ≤, >, ≥, Set-Var, ⊂ , ⊆ , ⊃ , ⊇ , =, ≠, ∈ , ∉ , ∅ , {, }, “,”, “|”

Start symbol: Expr

Expr ! Simple-Expr | Quant-Expr
Simple-Expr ! Implies-Expr | Implies-Expr ⇔ Simple-Expr
Quant-Expr ! Q-Opr Expr • Expr
Q-Opr ! ∀ | ∃ | ∃!
Implies-Expr ! Or-Expr | Or-Expr ⇒ Implies-Expr
Or-Expr ! And-Expr | And-Expr ∨ Or-Expr
And-Expr ! Not-Expr | Not-Expr ∧ And-Expr
Not-Expr ! Clause | ¬ Not-Expr
Clause ! (Expr) | Rel-Expr
Rel-Expr ! Num-Expr | Set-Expr | Set-Mem
Num-Expr ! Num Rel-Opr Num
Num ! Var | Literal
Rel-Opr ! = | ≠ | < | ≤ | > | ≥
Set-Expr ! Set Set-Opr Set
Set ! Set-Var | Set-Literal
Set-Opr ! ⊂ | ⊆ | ⊃ | ⊇ | = | ≠
Set-Mem ! Elem ∈ Set | Elem ∉ Set
Elem ! Var | Literal
Set-Literal ! ∅ | {} | { Elem-List } | Set-Imp
Elem-List ! Elem | Elem, Elem-List
Set-Imp ! { Expr “|” Set-Mem • Expr }

Fig. 2. Context-free grammar for a simple VDM++ expression

From the parse tree, the parser generates C
language code to evaluate the method predicate.
The idea of converting a formal specification into a
parse tree and generating C language code from the
tree has been discussed in [12]. The parser
produces a boolean-valued C function named
classname_methodname_pre() for each method in
the class under test (CUT). This generated function
is used by test generator to filter the test data.

The parser also generates a symbol table
containing all input variables for the method, and
their boundary values, using the parse tree. As an
example, consider the following VDM++ (partial)
specification of a BankAccount class:

 class BankAccount

 instance variables
 accountNum : int;
 balance : int;
 inv (accountNum > 0) ∧ (balance > 0);

 operations

 Create : (int) ==> ()
 Create (amount) == (balance := amount)
 pre amount > 0;
 post balance = amount;

 Withdraw : (int) ==> ()
 Withdraw(amount) == (balance := balance~ - amount)
 pre (amount > 0) ∧ (amount < balance);
 post balance~ = balance + amount;

end BankAccount

The input space for Withdraw() method consists
of the implicit parameter, i.e. current BankAccount
object, and the amount parameter. The method
predicate for the Withdraw() method is formed by
conjunction of the class invariant and the method
precondition, as below:

 ((accountNum > 0) ∧ (balance > 0)) ∧
 ((amount > 0) ∧ (amount < balance))

The parser uses the context-free grammar

defined above to parse the method predicate, and
generate C language code. The parser also produces
symbol tables for class invariant and method
precondition as shown in Fig. 3 and Fig. 4
respectively.

If an object is used as an attribute, or a
parameter, then a separate symbol will be required
to keep boundary values of its attributes.

The symbol tables define boundary values for
each input variable of the method to be tested.
These boundary values are used by test generator to
partition the input space.

Class Name Instance

Variable
Type Boundary

Value
BankAccount accountNum int 0

BankAccount balance int 0

Fig. 3. Symbol table for BankAccount class

Class Name Method
name

Parameter Type Boundary
Value

BankAccount Withdraw amount int 0

BankAccount Withdraw amount int balance

Fig. 4. Symbol table for Withdraw method

3.2 Test Generator
The test generator component of TCG is further
composed of three parts (Fig. 5), i.e.

a) test shell generator
b) test data generator, and
c) test case generator

3.2.1 Test Shell Generator
The test descriptor contains valid sequences of
method calls in an intermediate specification
language that extends the notation of regular
expressions. This intermediate language has been
described in [4] and is based on the work of [8].
The test shell generator determines valid test
sequences from this test descriptor and forms
templates for method calls. A test template consists

of a method name, and its parameter types. A test
shell is a sequence of test templates that describes a
valid transaction.

For instance, if there are Create, Delete,
Withdraw, Deposit, and InquireBalance methods in
our BankAccount class, then the following could be
valid sequences of operations:

Seq 1: Create, InquireBalance
Seq 2: InquireBalance, Withdraw
Seq 3: Withdraw, InquireBalance, Deposit
Seq 4: Create, Deposit, Withdraw, Delete
etc.

Test
Data

Test
Specification

Generated
Code

Test data
Generator

Symbol
Table

Test shell
Generator

Test case
Generator

Test
Shells

Test
Cases

Fig. 5. Architecture of the Test Generator component of TCG

while the following sequences are invalid:

Seq 5: Create, Delete, InquireBalance
Seq 6: Delete, InquireBalance, Withdraw
Seq 7: Withdraw, InquireBalance, Delete, Deposit
etc.

In order to allow only valid sequences of
operations, the test descriptor defines a test
specification as shown in the example below.

SeqSpec(BankAccount) ⇒ Create ⋅ ProcessAccount ⋅ Delete
ProcessAccount ⇒ (Deposit , Withdraw)* ↔ (InquireBalance)

The first production states that an account must

be first created then processed and finally deleted.
The second production defines how an account can
be processed. Using the above specification, the
test shell generator produces test templates as
shown below.

 BEGIN TEST 1
 Create <>
 Withdraw <int>
 Delete <>
 END TEST 1

 BEGIN TEST 2
 Create <>
 Deposit <int>

 Withdraw <int>
 Delete <>
 END TEST 2

 BEGIN TEST 3
 Create <>
 Deposit <int>
 InquireBalance <>
 Deposit <int>
 Delete <>
 END TEST 3

3.2.2 Test Data Generator
It determines method inputs for each method in the
CUT. Method inputs consist of parameters of the
method, including the implicit this parameter.
Using boundary values from the symbol table,
input space for each parameter is partitioned into
equivalence classes. The test data generator
generates a random test value for each parameter
from each partition. Then, method predicate code is
executed to filter the test data – only those data sets
are passed to the test case generator which satisfy
the method predicate.

In the BankAccount example, a possible set of
test values generated by test data generator is
shown in Fig. 6 and Fig. 7.

Class Name Instance

Variable
Type Boundary

Value
Test
Val 1

Test
Val 2

Test
Val 3

BankAccount accountNum int 0 -4 0 7

BankAccount balance int 0 -5 0 6

Fig. 6. Test values generated for instance variables

Class Name Method
name

Parameter Type Boundary
Value

Test
Val 1

Test
Val 2

Test
Val 3

BankAccount Withdraw amount int 0 -3 0 2

BankAccount Withdraw amount int -5 -10 -5 -1

BankAccount Withdraw amount int 0 -2 0 3

BankAccount Withdraw amount int 6 4 6 12

Fig. 7. Test values generated for method parameters

Using the generated test values, the test data
generator forms data sets by constructing all
possible combinations of test values of variables. In
our example of Withdraw method, a total of 108
(=3x3x12) data sets will be generated. The table in
Fig. 8 shows first fifteen data sets as an example.

Data set #

accountNum balance amount

1 -4 -5 -3

2 -4 -5 0

3 -4 -5 2

4 -4 -5 -10

5 -4 -5 -5

6 -4 -5 -1

7 -4 -5 -2

8 -4 -5 0

9 -4 -5 3

10 -4 -5 4

11 -4 -5 6

12 -4 -5 12

13 -4 0 -3

14 -4 0 0

15 -4 0 2

Fig. 8. First fifteen data sets produced by test data
generator

Out of these 108 data sets only 3 (data set # 99,

105 and 106) satisfy the method predicate. This is
determined by test data generator by executing the
generated data sets on the C code for the method
predicate. The negative data sets (which do not
satisfy method predicate) are eliminated, and only
positive ones are passed to the test case generator.

Data set #

accountNum balance amount

99 7 6 2

105 7 6 3

106 7 6 4

Fig. 9. Data sets that satisfy method predicate for
Withdraw

3.2.3 Test Case Generator

The test case generator is responsible for filling
the test data in empty test shells. Each test case is
formed by a set of values of instance variables
(representing the current object this) and a test
template with parameter values for all the methods.
The following are the test cases generated for test
template TEST 1 of our BankAccount example:

 BEGIN TEST 1-1
 accountNum = 7
 balance = 6
 Create <>
 Withdraw <2>
 Delete <>
 END TEST 1-1

 BEGIN TEST 1-2
 accountNum = 7
 balance = 6
 Create <>
 Withdraw <3>
 Delete <>
 END TEST 1-2

 BEGIN TEST 1-3
 accountNum = 7
 balance = 6
 Create <>
 Withdraw <4>
 Delete <>
 END TEST 1-3

4 Conclusion
In this paper, we have presented a novel

framework to automatically generate test cases for
a class from its IFAD VDM++ specification. The
ideas presented in the paper can be generalized to
other model-based object-oriented formal
specification languages as well. The proposed
technique requires a VDM++ specification, and a
test descriptor, to generate test cases.

References:
[1] Atterer, R.: “Automatic Test Data Generation

from VDM-SL Specifications”; The Queens
University of Belfast, April 2000.

[2] Boyapati, C., Khurshid, S., Marinov, D.:

“Korat: Automated Testing Based on Java
Predicates”; ACM, 2002.

[3] Dick, J., Faivre, A.: Automating the

Generation and Sequencing of Test Cases
from Model-based Specifications. In
Proceedings of FME ’93: Industrial-Strength
Formal Methods. Pages 268-284, Odense,
Penmark, 1993, Springer-Verlag.

[4] Fletcher, R. S.: “Testing of Object-oriented

Software using Formal Specifications”;
Masters Thesis, Department of Software
Development, Monash University, April
1994.

[5] Helke, S., Neustupny, T., Santen, T.:

“Automating Test Case Generation from Z
Specifications with Isabelle”; in
proceedings of the 10th International
Conference of Z Users, 1997, Springer-
Verlag.

[6] Hörcher, H.M.: “Improving Software Tests

using Z Specifications”; in proceedings of 9th
International Conference of Z Users, 1995,
Springer-Verlag.

[7] “VDMTools: The IFAD VDM++

Language”; IFAD, Forskerparken 10A, DK-
5210, Odense M., 1999; http://www.ifad.dk.

[8] Kirani, S., Tsai, W. T.: “Specification and

Verification of Object-oriented Programs”;
Technical Report, Computer Science
Department, University of Minnesota,
Minneapolis, December 1994.

[9] Liu, L., Miao, H., Zhan, X.: “A Framework

for Specification-Based Class Testing”; in
proceedings of the 8th IEEE International

Conference on Engineering of Complex
Computer Systems (ICECCS’02), 2002.

[10] Meudec, C.: “Automatic Generation of

Software Test Cases From Formal
Specifications”; Ph.D. thesis, The Queen’s
University of Belfast, May 1998.

[11] Mikk, E.: “Compilation of Z Specifications

into C for Automatic Test Result
Evaluation”; in proceedings of the 9th
International Conference of Z Users, 1995,
Springer-Verlag.

[12] Nadeem, A., Rehman, M. J.: “A Framework

for Automated Testing from VDM-SL
Specifications”; in proceedings of 8th IEEE-
INMIC Conference, 24-26 December 2004.

[13] Van Aertryck, L., Benveniste, M., Le

Métayer, D.: “CASTING: A Formally Based
Software Test Generation Method”;
Proceedings of the 1st International
Conference on Formal Engineering Methods
(ICFEM’97), 1997.

[14] Turner, C. D., Robson, D. J.: “A Suite of

Tools for the State-based Testing of Object-
oriented Programs”, TR-14/92, Technical
Report, Computer Science Division, School
of Engineering and Computer Science
(SECS), University of Durham, Durham,
England, April 1993.

