
Comparison of Decoding Algorithms for Concatenated Turbo Codes

Drago Žagar, Nenad Falamić and Snježana Rimac-Drlje
University of Osijek

Faculty of Electrical Engineering
Kneza Trpimira 2b , HR-31000 Osijek,

 CROATIA

Abstract – This paper deals with a comparison of decoding algorithms for concatenated turbo codes. For this
purpose we have implemented an algorithm of the concatenated convolutional turbo code in Matlab program. The
algorithms used for decoding of turbo codes were Log-MAP and SOVA. To perform measurements we have
simulated different communications conditions in the implemented model. We have evaluated the impact of the
Signal/Noise ratio and the frame length on bit error rate (BER) for different decoders and finally compared the
analysed decoding methods with theoretical limits.

Key-Words:- Turbo code, Log-MAP, SOVA, BER, Signal/Noise ratio

1 Introduction

Turbo codes have introduced great improvements in
efficiency in comparison to other error correcting
codes. Turbo codes work very close to Shannon limits
(difference below 0.5 dB) [3].
 We can find two basic types of turbo codes: a parallel
concatenated convolutional turbo code CRSC and a
block turbo code. By the CRSC code the output of the
coder is cyclically turned back to the input to repeat a
procedure of error checking. By increasing the number
of iterations we get better and more accurate results.
This technique is also called SISO (Soft Input/ Soft
Output). CRSC codes are accepted and adopted for
space telemetry, the third generation of mobile phones
and satellite TV [2].
The Block turbo code is represented by as non-
repetition convolutional decoder. This code has worse
characteristics than CRSC, especially by the low code
rate, but at higher code rates it is more efficient. The
main advantage of block turbo codes over CRSC is an
easier implementation, and consequently it was used
for broadband satellite transmission. [2].
The concatenated codes consist of two independent
codes that are interconnected to build a new code. The
concatenated codes could be built in series or in
parallel.
Concatenation is a process of assembling two code
words c1 and c2 into one common code word
consisting of elements of both codes in particular
order. If we have code word c1 = {000; 001; 110; 111}
and c2 = {000; 100; 011; 111} then there follows the
common code word c_ = {000000; 001100; 110011;
111111}.

To improve the abilities of code error correction and
statistical properties we use an interleaving device.
The turbo coders use parallel concatenation, and
decoders are based on serial concatenation. The serial
concatenated decoders are used because they could
share information, while the parallel concatenated
decoders work independently [6].
The decoding algorithms based on ML (Maximum
Likelihood) find out the most probable information
sequence, while the MAP (Maximum Aposteriori
Probability) algorithm finds out the most probable
information bit in decoding sequence.
A SOVA algorithm (Soft Output Viterbi Algorithm)
uses a decoder, which gives a real number as an
output. This number roughly represents the probability
of a bit error. The SOVA decoder uses finite state
machine to find out the information sequence.

2 Turbo coder

The turbo coder consists of two identical Repetition
Systematic Convolutional RSC coders with parallel
feedback. The coders are separated by an interleaver
and we use only one systematic output, while the
second one is a permuted systematic output.
The repetition systematic convolutional coder is
realised by feedback to the non-repetition
convolutional coder. The repetition convolutional
coder usually produces code words weightier than the
non-repetition one. That results in a decreased number
of code words with lower weight, but with better error
protection.
Both codes have the same minimal distance, but they
differ in Bit Error Rate BER, because it depends on

relations between an input and an output of the
respective coder. It is practically proved that by low
signal/noise ratio Eb/No BER is lower by the repetition
code than by the non-repetition one. [3].
The interleaver is used by turbo codes to introduce
randomness in the input sequence and to increase the
weight of the code words. The interleaver influences
directly the distance between the code words, and
consequently we could improve BER by avoiding the
usage of code words with low weight.
The objective of puncturing by turbo codes is a
periodical erasure of particular bits to decrease the

system load by coding (the extra bits that have to be
processed and transmitted). The puncturing device
erases bits with probability λ, while the remaining bits
are (1-λ)n. This concept is especially suitable for
convolutional codes and gives the optimal
characteristics to adjust the code rate by multiplexing
the information into the transmission channel. Two of
the most important features by puncturing are:
minimal puncturing of the systematic bits and equal
puncturing of parity bits of both coders. Puncturing of
systematic bits is avoided because they are more
important than parity bits and their puncturing causes
fading of code characteristics.

Figure 1. Block diagram of the implemented turbo code

3 Matlab simulator of turbo code

Figure 1 shows a block scheme of the turbo
coder/decoder, realised in Matlab application. An input
is randomly generated for all measurements, and an
interleaver mixes the input bits of coder 2. Both coders
produce parity bits that could be optionally punctured. In
an AWGN channel the signal is mixed with a noise
distributed by Gaussian, and finally it comes to the input
of two decoders. The decoders decode the signal by the
chosen decoding algorithm and share the information
depending on a desired number of iterations.
The possible options that the program offers are:

• Decoding algorithm – Log-Map or SOVA
• Frame length
• Generator sequence
• Puncturing
• Number of desired iterations for every frame
• Signal/noise ratio (Eb/No)

For the measurement purpose we have used two
different decoding algorithms: Log-MAP and SOVA
with a frame length of 100 and 800 bits. The sequences
are punctured at the rate of ½ . The program gives results
in frame errors (FER) and bit errors (BER) for each
iteration.

3.1 Decoding TC with Log-MAP algorithm

The MAP (Maximum Aposteriori Probability) algorithm
is introduced in 1974by Cocke, Jelinik and Raviv Bahl .
This algorithm is used for the prediction of the most
possible information bit that was sent in code sequence.
The Log-Map algorithm is MAP shifted into a
logarithmic domain. This algorithm belongs to SISO
(Soft – Input, Soft – Output). Even though the MAP
algorithm offers a better performance than the Viterbi
algorithm, it was not considered till recently, because of
the sheer simplicity of the Viterbi algorithm. Also, the
differences in error performance between Viterbi and
MAP algorithms were not much different at low BER's
[2][4].
But recently, the introduction of Turbo codes have
brought about an increased interest in this algorithm
because of the following reasons:

• its superior performance under low Eb/N0's and
high BER's.

• it is an inherently Soft - Input, Soft - Output
algorithm (SISO algorithm) and it very well
suited for Iterative Decoding (as it is used in
Turbo codes).

3.2 Decoding TC with SOVA algorithm

0 .0 0 E + 0 0

1 .0 0 E -0 2

2 .0 0 E -0 2

3 .0 0 E -0 2

4 .0 0 E -0 2

5 .0 0 E -0 2

6 .0 0 E -0 2

7 .0 0 E -0 2

8 .0 0 E -0 2

1 1 .4 1 .8 2 2 .4 2 .8 3 .2 4

E b /N o

B
ER

1 . ite ra tio n
2 . ite ra tio n
3 . ite ra tio n
4 . ite ra tio n
5 . ite ra tio n

An ML algorithm (e.g. Viterbi algorithm) is an
inherently hard output algorithm and has to be modified
to provide soft outputs. Modification resulted in the Soft
Output Viterbi Algorithm (generally called SOVA),
which is approximately twice as complex as the Viterbi
algorithm (but not as complex as the MAP) [1][5].
The SOVA algorithm uses a decoder that gives at its
output a real number, which represents the bit error
probability. The SOVA decoder uses a finite state
machine, by which every binary input is connected with
a binary output (i.e. an extra coder’s output). In such a
way we have got the input information and extra bits in
the decoder.

4 The measurements

4.1 Decoding TC with Log-MAP decoder

I. Measurement: Log-MAP, parity bits punctured,
 frame length 100.

Figure 2. Dependence of BER and Eb/No for each of 5
iterations by Log-MAP algorithm, frame length 100

Figure 2 shows the dependence of BER – Eb/No for a
different number of iterations by frame length 100.
Obviously after 5 iterations we obtain very similar
results and further computation is usually not necessary,
especially when the additional processing delay is not
desirable.

II. Measurement: Log-MAP, parity bits punctured,
frame length 800.

Figure 3 shows the dependence of BER – Eb/No for a
different number of iterations by frame length 800. Here
we can notice that for the increased frame length,
especially by a lower Eb/N0 ratio, BER is lower.

Figure 3. Dependence of BER and Eb/No for each of 5
iterations by Log-MAP algorithm, frame length 800

III. Measurement: Log-MAP, parity bits punctured,
5th iteration, frame length 100 and 800.

0.00E+00
5.00E-03
1.00E-02
1.50E-02
2.00E-02
2.50E-02
3.00E-02
3.50E-02
4.00E-02

1 1.8 2.4 3.2

Eb/No

B
ER

Log-MAP 100
Log-MAP 800

0.00E+00

1.00E-02

2.00E-02

3.00E-02

4.00E-02

5.00E-02

6.00E-02

7.00E-02

1 1.4 1.8 2 2.4 2.8 3.2 4

Eb/No

B
ER

1. iteration

2. iteration

3. iteration

4. iteration

5. iteration

Figure 4. Influence of frame length on BER and Eb/No
by Log-MAP algorithm

In Figure 4 we have compared the values of the 5th
iteration for a different frame length (100 and 800) for
the Log-MAP algorithm. It is obvious that by a lower
signal/noise ratio the Log-MAP algorithm gives better
results for a longer frame length (for the same number of
iterations). However, by increasing the signal/noise ratio
this difference becomes negligible.

4.2 Decoding TC with SOVA decoder

IV. Measurement: SOVA, parity bits punctured,
frame length 100.

The next measurement is brought out for the SOVA
decoder, parity bits were punctured and the frame length
was 100 bits. Figure 5 shows the influence of the number
of iterations between decoders and the signal/noise ratio
on BER.

Figure 5. Dependence of BER and Eb/No for each of 5
iterations by SOVA algorithm, frame length 100

We can see that for lower values of Eb/No the impact on
BER is much greater than for higher ones. It is also
noticeable that the algorithm converges very fast, and
further iterations are usually not necessary.

V. Measurement: SOVA, parity bits punctured,
frame length 800.

Figure 6. Dependence of BER and Eb/No for each of 5
iterations by SOVA algorithm, frame length 800

Figure 6 shows the diminution of BER by increasing
Eb/No for the frame length 800. We can see that BER is
minimal already by 2.4 dB for the 2nd and further
iterations, while by frame length 100 it is minimal just
beyond 3.2 dB.

VI. Measurement: SOVA, parity bits punctured, 5th
iteration, frame length 100 and 800.

0.00E+00

1.00E-02

2.00E-02

3.00E-02

4.00E-02

5.00E-02

6.00E-02

7.00E-02

8.00E-02

1 1.4 1.8 2 2.4 2.8 3.2 4

Eb/No

B
ER

1. iteration

2. Itera tion

3. Itera tion

4. Itera tion

5. Itera tion

0.00E+00

1.00E-02

2.00E-02

3.00E-02

4.00E-02

5.00E-02

6.00E-02

1 1.4 1.8 2 2.4 2.8 3.2 4
Eb/No

B
ER

SO VA 100
SO VA 800

Figure 7. Influence of frame length on BER and Eb/No

by SOVA algorithm

Figure 7 shows the influence of the frame length on
BER. We can see that better results are achieved by a a
longer frame length, similarly to by the Log-MAP
algorithm. The curves are merged and the difference is
negligible by higher Eb/No beyond 3.2 dB.

0 .0 0 E + 0 0
1 .0 0 E -0 2
2 .0 0 E -0 2
3 .0 0 E -0 2
4 .0 0 E -0 2
5 .0 0 E -0 2
6 .0 0 E -0 2
7 .0 0 E -0 2
8 .0 0 E -0 2
9 .0 0 E -0 2

1 1 .4 1 .8 2 2 .4 2 .8 3 .2 4

E b /N o

B
ER

1 . ite ra t io n
2 . Ite ra t io n
3 . Ite ra t io n
4 . Ite ra t io n
5 . Ite ra t io n

4.3 Comparison of Log-MAP and SOVA

Figure 8 shows the comparison of the performed
algorithms for different frame lengths. We can see that
the Log-MAP algorithm is dominant by both shorter and
longer frames. The difference is more visible for smaller
signal/noise ratios that are usual in practice.

0 .0 0 E + 0 0

1 .0 0 E -0 2

2 .0 0 E -0 2

3 .0 0 E -0 2

4 .0 0 E -0 2

5 .0 0 E -0 2

6 .0 0 E -0 2

1 1 .4 1 .8 2 2 .4 2 .8 3 .2 4

E b /N o

B
ER

S O V A 1 0 0
S O V A 8 0 0
L o g -M A P 1 0 0
L o g -M A P 8 0 0

Figure 8. Comparison of Log-MAP and SOVA
algorithm by frame length 100 and 800

Figure 9. Comparison of Log-MAP and SOVA

algorithm with simple theoretical TC

Figure 9 shows the results of the Log-MAP and SOVA
decoder for the 2nd iteration, frame length 800, and the
2nd iteration of the simple Turbo decoder. We can see
that the best results were obtained for the Log-MAP
decoder and despite a relatively complex algorithm it is
the best solution for most situations.

5 Conclusion

Due to huge volume of digital data presen practically
everywhere it is necessary to develop appropriate
algorithms for their transmission. However, data
processing by a sender and a receiver is becoming
efficient, and the transmission system must be able to
transmit such amount of information by the allowed low
BER. The turbo code fits very well into this scenario
because of its simplicity and efficiency. Turbo codes
have introduced great improvements in efficiency
compared to other error correcting codes.
This paper presents the comparison of two methods for
turbo code decoding: Log-Map and SOVA algorithm.
The MAP (Maximum Aposteriori Probability) algorithm
is used for prediction of the most possible information
bit sent in code sequence. The Log-Map algorithm is
MAP shifted into a logarithmic domain. The Soft Output
Viterbi Algorithm, SOVA, uses a decoder that gives at
its output a real number, which represents the bit error
probability.
The results obtained from the implemented model of
turbo code in Matlab program show that a better BER,
for both decoders, could be obtained by sending the
information in longer frames. If we compare the Log-
MAP and SOVA algorithm we can conclude that Log-
MAP dominated in all relevant parameters. It has lower
BERs for all same signal/noise ratios (Eb/No).

References:

0 . 0 0 E + 0 0

1 . 0 0 E - 0 2

2 . 0 0 E - 0 2

3 . 0 0 E - 0 2

4 . 0 0 E - 0 2

5 . 0 0 E - 0 2

6 . 0 0 E - 0 2

7 . 0 0 E - 0 2

8 . 0 0 E - 0 2

1 1.8 2.4 3.2

E b / N o

B
ER

L o g - M A P 8 0 0
S O V A 8 0 0
S im p le T C

[1] D. Garrett, M. Stan, Low power architecture of the
soft-output Viterbi algorithm, 1998 International
Symposium on Low Power Electronics and Design,
1998, pp. 262-267.

[2] S. S. Pietrobon, Implementation and performance of
a Turbo/MAP decoder, International Journal of
Satellite Communications, vol. 16. pp. 23-46, 1998.

[3] Berrou, C., Glavieux, A. and Thitimajshima, P.,
Near Shannon limit error-correcting coding and
decoding: turbo codes, ICC 1993, Geneva,
Switzerland, pp. 1064-1070, May 1993.

[4] S. Benedetto, G. Montorsi, Iterative decoding of
serially concatenated convolutional codes, IEE
Electron. Lett., vol. 32, pp. 1186-1188, June 1996.

[5] J. Hagenauer and P. Hoeher, A Viterbi Algorithm
with Soft-Decision Outputs and its Applications, In
Proc. Globecom `89, Dallas, USA, pp. 1680-1686,
1989.

[6] B.J. Frey and F.R.Kschischang , Probability
Propagation and Iterative Decoding, IEEE
Transactions on Communication, Control and
Computing 1996, Champaign-Urbana, Illinois.

[7] L.Bahl, J.Jelinek, J.Raviv, and F.Raviv, Optimal
Decoding of Linear Codes for minimising symbol
error rate, IEEE Transactions on Information
Theory, vol. IT-20, pp.284-287, March 1974.

