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Abstract: - We present a new method of a small-signal stability analysis for power systems with parametric 
uncertainties in load characteristics. These uncertainties must always be considered in a power system stability 
assessment since a power demand changes constantly and a precise composition of the electrical loads is 
usually unknown. The proposed method is based on an iterative algorithm which determines root clustering of 
a polytope of polynomials in a simply connected domain. It is suitable for an assessment of the electro-
mechanical oscillations and dynamical voltage stability of power systems.  According to our method stability 
verification at each iteration step is analytical and requires significantly shorter computation time than other 
methods available in literature. 
 
Key-Words: Electro-mechanical oscillations, Parametric uncertainty, Power system analysis, Root clustering, 
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1 Introduction 

One of the dominant factors defining a post-
disturbance behavior of power system and its 
voltage stability limits is electrical loads 
characteristics. Therefore an adequate load 
representation is of a primary importance in the 
power system stability assessment. In the traditional 
stability analysis load characteristics are assumed to 
be known [3]. However, it should be noted that this 
assumption is generally not valid. This is due to the 
following fact: Power demand changes permanently 
while precise information on a complex load 
composition is usually absent. As a result, there 
exist large uncertainties in the parameters of the 
load characteristics and, consequently, robust 
control approach is required in the voltage stability 
analysis. An early attempt to incorporate robust 
control theory in power system stability studies was 
carried out in [4]. In this paper static exponential 
load characteristics with unknown values of the 
exponents are assumed together with synchronous 
generator dynamics and algebraic system equations. 
A particular linearization technique [5], treating the 
load’s active and reactive powers as input, load 
voltage phase angle and magnitude as output, and 
load characteristic exponents as parameters of the 
system, leads to a state space model which is 
applicable to a small-signal stability analysis. A 
closed-loop characteristic polynomial of this model 

is affine in the parameters of the load 
characteristics. Assuming given operating 
conditions and nominal values of the exponents for 
which the closed-loop characteristic polynomial has 
all its zeros in a prescribed region of the complex 
plane, i.e. is D-stable, the maximal tolerable 
deviations of the load model exponents, which 
preserve this D-stability, are found using the testing 
function derived in [1]. For the robust stability 
application it was assumed in [4] that absolute 
values of the active and reactive load exponent 
deviations are equal. This assumption is unjustified 
from the engineering viewpoint. Moreover, the 
analysis presented in [1] and [4] suffers from even 
more significant drawback: the exploited testing 
function is not analytical. As a result, there always 
exists a possibility that an unstable set of parameters 
will be overlooked. To overcome the above 
mentioned drawbacks we have developed a new 
totally analytical method which allows one to find a 
complete set of stable load parameters without any 
preliminary assumptions on their relation [6]. This 
method is based on a zero set concept [2] and 
involves a commutative algebra to calculate 
boundaries of the stable parameter set. The 
calculations involving the commutative algebra may 
become very time consuming.  Therefore, to achieve 
a fast stability assessment, we have developed a new 
analysis technique which is described in the present 
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paper. This iterative technique is based on the 
necessary and sufficient conditions for root 
clustering of a polytope of polynomials in a simply 
connected domain [8]. At each iteration step, 
stability verification is completely analytical 
preventing an unstable set of parameters from being 
overlooked. The proposed technique is suitable for 
different types of small-signal power system 
stability studies, such as dynamic voltage stability 
and low-frequency oscillations. Its application to a 
three-bus power system is demonstrated by 
numerical examples. 

 
2 Power System Model 

In the present paper a three-bus power system 
shown in Figure 1 is considered. It includes 
synchronous generator at bus 1, large intermediate 
load area at bus 2 and the rest of the power system 
represented as a stiff power system having an 
infinite power capability at bus 3. 
     The nonlinear mathematical model of this system 
is derived according to the strategy proposed in [5]. 
The final equations, which define the relations 
between system variables, are shown below 
(neglecting damping windings, saturation, flux time 
derivatives, armature resistances). The synchronous 
generator is modeled by 
Flux-decay model of the electromagnetic dynamics: 
                                 d q qV X I=                             (1) 

                             ' '
q d d qV X I E= − +                       (2) 

          ( )
'

' ' '
0

q
d q d d d fd

dE
T E X X I E

dt
= − − − +         (3) 

 
Rotor angle equation: 

                               syn
d
dt
δ ω ω= −                         (4) 

Swing equation of motion dynamics: 

           ( )2 f
m e syn

syn syn

DH d T T
dt
ω ω ω

ω ω
⋅ = − − −        (5) 

Terminal voltage algebraic equations: 
                      2 2

g d qV V V= +                                 (6) 

                 arctan
2

q
g

d

V
V

πθ δ
⎛ ⎞

= + −⎜ ⎟
⎝ ⎠

                    (7) 

First-order automatic voltage regulator (AVR) 
dynamics: 

             ( )fd
E fd A ref g

dE
T E K V V

dt
= − + −              (8) 

Active and reactive power equations: 
( ) ( )' '

g d d q q q q d d d q qP V I V I X I I X I E I= + = + − +   

                                                                                (9) 
             

( ) ( )
( )

' '
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g q d d q d d q d q q q

d d q d q q

Q V I V I X I E I X I I

X I E I X I

= − = − + +

= − + −
      

                                                                              (10) 
The transmission network is represented using the 
power flow equations 

( )2
11 11 12 12cos cosg g g l g lP V Y V V Yα θ θ α= + − −   

                                                                              (11) 
( )2

11 11 12 12sin sing g g l g lQ V Y V V Yα θ θ α= − + − −  

            (12) 
( )

( )
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2
22 22 23 23

cos

cos cos
l l g l g

l l s l

P V V Y

V Y V V Y

θ θ α

α θ α

= − − −

− − −
         (13) 

 ( )
( )

21 12
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sin sin
l l g l g

l l s l

Q V V Y

V Y V V Y
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The load power-voltage relations are described by 
the static exponential model: 

      0 0
0 0

p qn n

l l
l l l l

l l

V V
P P Q Q

V V
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

         (15) 

After a systematic linearization [5] around the 
operating point and some matrix manipulations, the 
state-space representation of the power system is 
obtained:                                                    

                         

( )

,

,

,p q

d A B
dt

C D

H n n

= +

= +

=

l

l l

l l

∆X ∆X ∆S

∆Z ∆X ∆S

∆S ∆Z

               (16) 

where  
' T

q fdE Eδ ω⎡ ⎤= ∆ ∆ ∆ ∆⎣ ⎦∆X  is a deviation 

vector of the generator state variables, 
[ ]T

l lP Q= ∆ ∆l∆S  is a vector of active and 
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Fig. 1. A three-bus power system. 
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reactive load power deviations, 
[ ]T

l lVθ= ∆ ∆l∆Z  is a vector of load bus voltage 
magnitude and phase angle deviations. 
      As can be seen, the above equations define 
MIMO dynamic system shown in Fig. 2 with l∆S  as 
an input and l∆Z  as an output. The transfer function 
matrix of this system is 
                  ( ) ( ) 1G s C sI A B D−= − +                (17) 
and, consequently, the closed-loop characteristic 
polynomial (CLCP) is obtained according to [4] as 
                           

( ) ( ) ( )
( ) ( )

, , det ,

,

p q p q

p q

CLCP s n n I G s H n n

G s H n n

⎡ ⎤= − ×⎣ ⎦
⎡ ⎤⎡ ⎤×∆ ∆⎣ ⎦ ⎣ ⎦

   (18) 

where ( )G s⎡ ⎤∆ ⎣ ⎦  and ( ),p qH n n⎡ ⎤∆ ⎣ ⎦  are 

characteristic polynomials of ( )G s and ( ),p qH n n  

respectively. 
 

H

+

≡0 ∆Sl ∆Zl⎡ ⎤
⎢ ⎥
⎣ ⎦

A B
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Fig. 2. MIMO model of the power system. 
 
3 Problem Formulation 

As it was shown in [6], the closed-loop 
characteristic polynomial of the linearized power 
system model derived in the previous section 
depends affinely on the parameters of the 
exponential load characteristics. Therefore our 
analysis is restricted only to the case when the 
characteristic polynomial 

                 ( ) ( )
1

0
,

n
n i

i
i

p s q s a q s
−

=

= + ∑                 (20)       

has coefficients ( )ia q  which depend affinely on 

underlying physical parameters 1 2, ,..., lq q q , while 
each of these parameters is known only within given 
bounds ,k kq q− +⎡ ⎤⎣ ⎦ . 

The resulting set of polynomials turns out to be a 
polytope. That is, this set is the convex hull of the 
2l  polynomials obtained by setting q  to an extreme 
point. 

      The main theorem presented in [8] and given 
below provides an effective method of the robust 
multidimensional stability check up. 
Theorem 1 [8]: All zeros of the polynomials in the 
given polytopic family lie in a simply connected 
domain D (i.e. the polytope of the polynomials is D-
stable), if and only if 
i). one arbitrary vertex polynomial of the polytope 
has all its zeros inside D, and 
ii). For every two vertices of the polytope 
(corresponding to polynomials iP  and jP ) which 
are the end-points of the exposed edge, if 
               ( ) ( ) ( ) ( ) 0 i j j iR X R Xδ δ δ δ− =         (21) 

for some real parameter 0=   ( ) δ δ ∈ ∆ ∆ ∈\ then, 
unless 0 0( ) ( ) 0i jR Rδ δ= = , the condition is 

                      0 0( ) ( ) 0i jR Rδ δ >                          (22) 

If  0 0( ) ( ) 0 i jR Rδ δ= = the above condition should 
be replaced by 
                      0 0( ) ( ) 0 i jX Xδ δ >                       (23) 
where 

( ) Re{  [  ( )]}i iR Pδ ϕ δ= , 
( ) Re{  [  ( )]}j jR Pδ ϕ δ= , 

1( ) Im{  [  ( )]}i iX P
j

δ ϕ δ= , 

1( ) Im{  [  ( )]}j jR P
j

δ ϕ δ=  

The additional conditions needed to avoid a 
possibility of a zero moving from the domain D  in 
the complex plane to its complementary D  through 
infinity are 
                              ( ) 0i

na i≠ ∀                           (24) 

                         
( )

( ) ( ) [ ]0,1
j

n
j i

n n

a
a a

∉
−

                       (25) 

where ( )i
na  denotes a leading coefficient of the 

polynomial iP . 
Analyzing the D-stability conditions, which were 
described earlier in the present section, one may 
conclude that they fit to the case when the parameter 
perturbations are known. At the same time our goal 
is to find a complete set of the load parameters pn  

and qn  for which D-stability of the power system is 
preserved. That is we would like to determine all 
complex loads which, been connected in the 
intermediate area at bus 2, provide the required 
system performance. In order to make the above 
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mentioned conditions applicable to our case, we 
have developed the iterative algorithm described in 
the next section. 
 
4 Problem Solution 
First of all we create a proper ray partition in the 
parameter space p qn n−  as shown in Fig. 3 [7]. 

Recall that a ray partition in n\  is a set 
{ }, 1, 2,...,ir i Nℜ =   =  of rays, where 

{ }: , 0, , 0n n
i i i i i ir x x e e eλ λ= ∈ = ≥ ∈ ≠\ \  with 

the unit ray vectors ie  specifying the rays. Hence 
any point on the ray ir  is uniquely determined by 
the non-negative scalar iλ  which is called a scaling 
factor. The proper ray partition is a subclass of the 
ray partitions with all the rays intersecting in only 
one point – origin, i. e. { }1 2 ... Nr r r∩ ∩ ∩ = 0 .  

qn

pn
e1

e2

eN

e4

e3

e5

ek

r 3=
λ 3⋅

e 3

r2=
λ 2⋅e 2

r1=λ1⋅e1

 
 

Fig. 3. A ray-partition of the parameter space. 
 

The origin of the parameter space ( 0p qn n= = ) 
corresponds to the stable operating conditions. 
Noting that the required set of the parameters is 
convex due to the affine dependence of the 
characteristic polynomial, it can be approximated by 
the ray-polytope [7]. Hence, our problem reduces to 
a search of the vertices of this ray-polytope along 
the ray vectors ie . That is we need to find a 
maximal scaling factor iλ  along the ray vector ie  
such that a point i i ir eλ= ⋅  in the parameter space is 
stable. The problem can be solved using a simple 
bisection algorithm visualized in Fig. 4. In this 
algorithm, stability verification is based on the 
theorem presented in the previous section.  Using 
the ray partition and the bisection algorithm, a stable 
region in the parameter space can be determined 

with an arbitrary accuracy depending on a number 
of rays used for the space partition.  Note that the 
construction of this region can be speeded up 
significantly if its convexity is taken into 
consideration. Indeed, the initial population of 0N  
ray vectors forms a polytope. The scaling factor of 
the ray kr  passing through the mid-point of a 
segment connecting two vertices of the polytope ir  
and jr  which belong to the same face is not smaller 
than 

                       min
22

i jk
k

r r
λ λ

+
≥ =                     (26) 
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min min

1
max

k k
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k k
i im

λ λ
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+
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=
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1 1
max min
k k
i iλ λ ε+ +− <

min
k

i iλ λ=
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min max

2

k k
k i i
im λ λ+

=

1
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1
max max

k k
i i
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i i
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+
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Fig. 4. A bisection algorithm. 
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This fact allows decreasing of the initial interval 
which has to be assumed in the bisection algorithm 
shown in Fig. 4 to find a scaling factor kλ of the ray 

kr  passing trough the midpoint ( ) / 2i jr r+ , i.e. 

along the direction 

                    
2 2

i jk
k

k i j

r rre
r r r

+
= =

+
                     (27) 

Generating successively next populations 
( )1, 2,...,kN k n  =  of the rays along the directions 

defined in (27) one may find a stable region in the 
parameter space with arbitrary precision. 
  
5 Numerical example 
      To visualize an application of the described 
above iterative technique, we consider the power 
system described in Fig. 1 which operates at the 
operating point defined by the system parameters 
and loading conditions given in Appendix. The 
closed loop characteristic polynomial (CLCP) of 
this system derived according to Section 2 is 
 

( ) ( )
( )
( )
( )
( )

4

3

2

, , 1 0.0206 0.0834

36.1 0.7679 3.0336

291.4 1.4821 22.0498

2293.8 152.5494 272.9624

9269.2 749.2177 736.0847

p q p q

p q

p q

p q

p q

CLCP s n n n n s

n n s

n n s

n n s

n n

= + +

+ + +

+ − +

+ − +

+ − +

  (26) 

 
Note that the same polynomial was considered in [4] 
and [6]. The roots of the CLCP for the voltage 
independent load ( 0p qn n= = ) are 

                1 2

3,4

28.2861, 5.7161,
1.0654 7.4987

s s
s j
= − = −

= − ±
 

We assume a region of the D - stability, that is a 
desired region of the CLCP roots location in the 
complex plane, to be [6] 
 

                    1, 2,3iD D i= =∪                (27) 
 

where 1D  is a half-plane with real part 5σ ≤ − , 

2D  is a disk of radius 1ε = centered on the CLCP 
root 3 1.0654 7.4987s j= − + , 

3D  is a disk of radius 1ε = centered on the CLCP 
root 4 1.0654 7.4987s j= − − . 

This region is depicted in Fig. 5 and corresponds to 
the desired behavior of the power system during 

electro-mechanical oscillations. 
 

 
Fig. 5. The D-stable region in the complex plane.  

 
A parametrical representation of the boundary of the 
D-stable region in the complex plane is given by 
         ( )1 5 , ,D jδ δ∂ = − +   ∈ −∞ +∞                   (27) 
for the half-plane, and by 

           
( )

( ) [ ]
2,3 1.0654 cos 2

7.4987 sin 2 0,1

D

j

πδ

πδ δ

⎡ ⎤∂ = − +⎣ ⎦
⎡ ⎤± + , ∈⎣ ⎦

       (28) 

for the two unit circles. 
The physically meaningful values of the load 
parameters lie in the interval [ ]5,5− . Therefore, we 

assume that the maximal scaling factor maxλ  in the 

bisection algorithm is 2 25 5 5 2+ = . 
Using this maximal value of the scaling factor and 
the parametrical representation of the D-stable 
region in the complex plane, which was described 
earlier, one may find the D-stable domain in the 
parameter space applying the iterative technique 
presented in the previous section. The D-stable 
domain obtained using 64  rays is shown in Figure 
6. Note that it represents a fairly good 
approximation of the complete set of the stable load 
parameters found in [6]. 
 

 Fig. 6. The D-stable domain in the parameter space 
(electro-mechanical oscillations).  
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     A computational efficiency of the proposed 
algorithm can be increased significantly if the 
following variable substitutions are made 

            ( ) ( )
( )

2 2

2 2

1 tan 1cos 2
1 tan 1

t
t

πδ
πδ

πδ
− −

= =
+ +

       (29) 

             ( ) ( )
( )2 2

2 tan 2sin 2
1 tan 1

t
t

πδ
πδ

πδ
= =

+ +
       (30) 

Using these substitutions (21) is transformed into a 
polynomial equation, for which efficient algorithms 
of the solution search are available. 
    Obviously, the proposed technique can be used 
for the dynamic voltage stability assessment. In this 
case the D-stable region is a left half-plane and the 
parametric representation of its boundary is  
                     ( ), ,D jδ δ∂ =   ∈ −∞ +∞                (31) 
 
6 Conclusion 

A new iterative method of the small-signal 
power system stability analysis has been developed 
in the present paper. This method is suitable for an 
assessment of the electro-mechanical oscillations 
and dynamical voltage stability of power system and 
allows one to find a complete set of load parameters 
for which a particular system performance is 
preserved. The stability verification procedure used 
in our method is totally analytical. It is based on root 
clustering of a polytope of polynomials in a simply 
connected domain. The proposed method has a 
number of advantages over the other techniques 
available in literature: it does not require a testing 
function which is grid-sensitive as in [4], the 
computational time and computer memory 
capability are significantly lower than those needed 
in [4] and [6]. 
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Appendix 
 

Table A.1. Synchronous generator data. 
[ ], . .dX p u  [ ], . .qX p u  [ ]' , . .dX p u  [ ]/ , . .f synD p uω

1.72 0.45 0.45 0.05 
[ ]'

0 , secdT  [ ], secH  [ ], / secsyn radω  
6.3 4.0 377 

Table A.2. Exciter data. 
[ ], . .AK p u  [ ], secET  
20 0.03 

 
Table A.3. Transmission line and capacitor data. 

[ ]1 2 , . .R R p u= [ ]1 2 , . .X X p u=  [ ], . .b p u

0.012 0.3 0.066 
 

Table A.4. Operating point data 
[ ], . .gV p u  [ ], .deg.g elθ  [ ], . .SV p u  

1.0 24.177 1.0 

[ ], . .gP p u [ ], . .gQ p u  [ ], . .lP p u  [ ], . .lQ p u

0.9 0.286 0.5 0.3 
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