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Abstract

We consider topological charge-5 soliton collisions in the nonlinear O(3) sigma
model on a flat torus T2. Only for tightly localised configurations at the initial time
do we observe dual-polygon scattering.
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1 Introduction

The nonlinear O(3) or CP 1 sigma model
in two spatial dimensions possesses soliton
solutions (or energy lumps) which are ex-
tensively studied for their various applica-
tions in field theory, condensed matter and
other branches of physics [1].

A most interesting charasteristic of
topological defects of the sigma type, like
vortices, strings, skyrmions, etc., is their
dual-polygon scattering: when N identi-
cal solitons are placed at the vertices of a
regular polygon and sent with equal speed
to the centre of the polygon, they scatter
off and move towards the vertices of the
dual polygon, ie, the scattering angle is
π/N [2, 3]. Such behaviour may be ex-
plained in terms of the symmetry of the

initial configuration under the transforma-
tions of the dihedral group DN , when the
solitons dwell in an isotropic manifold as
S2, in the planar case.

Limiting ourselves to the homotopy
class N = 5, in the present paper we con-
tinue our investigation [4] of lump scatter-
ing in the O(3) model on a flat torus T2.
Because the latter does not possess the D5

symmetry of the initial soliton state, dual
scattering does not have to take place in
general. We are interested on how the
anisotropy of the torus affects the scatter-
ing angle.

Since the full time-dependent O(3)
model has no known analytical solutions,
our study relies on the numerical simula-
tions of the time evolution.
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2 The Model

The non-linear O(3) sigma model in
(2+1) dimensions involves three real

scalar fields �φ(xµ) ≡ < φ1, φ2, φ3 >
with the constraint that for all
xµ ≡ (x0, x1, x2) = (t, x, y) the fields

lie on the unit sphere S2: �φ.�φ = 1.
Subject to this constraint the lagrangian
density and the equations of motion are

L =
1

4
(∂µ

�φ).(∂µ�φ), (1)

∂µ∂µ
�φ + (∂µ�φ.∂µ

�φ)�φ = �0. (2)

For any value of t, the fields �φ are har-
monic maps T2 �→ S2 satisfying the peri-
odic boundary conditions

�φ(x + mL, y + nL) = �φ(x, y), (3)

where m, n = 0, 1, 2, ..., and the period L
denotes the size of the square torus.

We conveniently use the CP 1 formula-
tion of the model, consisting of one inde-
pendent complex field W related to �φ via
the stereographic projection W = φ1+iφ2

1−φ3
.

Introducing complex coordinates z = x1 +
ix2 on the torus the boundary conditions
(3) take the form

W (z + mL + inL) = W (z). (4)

The static N -soliton configurations (in-
stantons) are order-N elliptic functions
which we write in terms the Weierstrass’
σ function as

W = λ

N∏
j=1

σ(z − aj)

σ(z − bj)
,

N∑
j=1

aj =

N∑
j=1

bj .

(5)
The integer N represents the topological
charge when N > 1, λ is related to the size

of the solitons and the zeros aj and poles
bj determine the positions of the lumps.
Amongst other applications, the fields (5)
were used in [5] within a model quantum
field theory.

The static energy density associated
with (1) is

E = 2
|∂zW |2 + |∂z̄W |2

(1 + |W |2)2
, (6)

plots of which produce the familiar CP 1

lumps of energy localised in space. The en-
ergy E is related to the the soliton number
N by the Bogomolnyi bound

E ≥ 2π|N |. (7)

The instanton solutions correspond to the
equality in (7): solutions carrying N > 0
(N < 0) imply ∂z̄W = 0 (∂zW = 0), the
Cauchy-Riemann conditions for W being
an analytic function of z (z̄).

As per the numerical set-up, fields of
the form (5) serve as initial conditions for
our numerical simulation, where the time
dependence is introduced via the Lorentz
boosting. Since during the simulations the
field W may become arbitrarily large, we
run our simulations in the O(3) formula-
tion (2).

For a square torus the function σ pos-
sesses a simple Laurent expansion of the
form

σ(u) =

∞∑
j=0

Gju
4j+1, Gj ≡ Gj(L) ∈ �,

(8)
where it is sufficient to compute the series
(8) up to G5 as our coefficients for j > 5
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are negligibly small; we have

G0 = 1
G1 = −0.7878030
G2 = −0.221654845
G3 = 9.36193 × 10−3

G4 = 7.20830 × 10−5

G5 = 2.37710 × 10−5

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

We have used the fourth-order Runge-
Kutta method of simulating the time de-
pendence and approximated the spatial
derivatives by finite differences. The
Laplacian has been evaluated using the
standard nine-point formula.

The discrete model has been evolved
on a nx × ny = 200 × 200 square peri-
odic lattice with spatial and time steps
δx=δy=0.02 and δt=0.005, respectively.
The vertices of our fundamental period cell
are then (0, 0), (0, L), (L, L), (L, 0); L =
nx × δx = 4.

3 Scattering

Consider a configuration of five tightly lo-
calised solitons, described by the elliptic
function (5) with N = 5, λ = (1, 0) a1 =
(2.85, 2), b1 = (1.45, 1.95) and

aj = (a1 − C) exp (iηj) + C
bj = (b1 − C) exp (iηj) + C
ηj = (j − 1)2π

5
, j = 2, 3, 4, 5,

(9)

where C ≡ (L/2, L/2) is the centre of the
lattice. The energy distribution (6) for this
configuration is depicted in figure (1), top-
left.

Note that the choice (9) automatically
satisfies the selection rule

∑3
j=1 aj =∑3

j=1 bj between the zeroes and poles of
W .

Now, it is well-known [6] that the planar
sigma model is scale invariant, so its lumps
can shrink or expand indefinitely as the
time elapses. As usual, we stabilise the
solitons by adding to the pure lagrangian
(1) a Skyrme-like term [7]

−θ1

4
[(∂µ�φ.∂µ

�φ)2 − (∂µ�φ.∂ν �φ)(∂µ
�φ.∂ν

�φ)],

(10)
where θ1 = 0.001 in all our simulations.
The resulting lagrangian, a planar ana-
logue of the Skyrme model of nuclear
physics [8], has been extensively studied;
in particular, recently in connection with
Skyrme crystals [9] and because of its
similarities with the structure of fullerene
shells in carbon chemistry [10].

The evolution of the configuration (9) is
shown in figure 1 through various snap-
shots at different times. The identical
skyrmions are boosted to the centre of the
grid where they collide at a zero impact
parameter; the lumps coalesce in a ringish
structure, re-arrange themselves and come
out moving towards the vertices of the
dual-pentagon, scattering at an angle of
π/5 radians. The latter can be best ap-
preciated in figure 2 (top) where we have
superimposed the states t = 0 and t = 1.5.

Note that because of the periodic
boundary conditions we have a periodic
tiling of the plane with a fundamental
cell L × L hosting the solitons but there
are further solitons from other tiles in-
teracting with the original ones, a situa-
tion that might affect their scattering be-
haviour. There is also some overlapping
between the solitons; we may reduce the
possibility of its occurring by placing the
lumps far from the borders of the funda-
mental square –hence resembling a config-
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uration on �2 as in figure (2)-top. But
as the lumps are more widely separated,
closer to the borders, the anisotropy of T2

might have a telling effect in the dynamics.

In figure 2 (bottom, t=0) we have a
configuration of widely separated lumps,
corresponding to a1 = (3.55, 2), b1 =
(1.45, 1.95), λ = (1.5, 0). The initial
five lumps are the ones positioned farther
apart from the centre; they do not look
perfectly identical as they begin to feel one
another through the wrap around of their
tails. After the collision we have the con-
figuration labelled t = 3 in the lower part
of figure (2), where we observe that the five
structures move along a line which does
not form 36◦ with the initial direction of
motion.

4 Conclusions

We have studied head-on collisions be-
tween CP 1 solitons on a flat torus in the
homotopy class N = 5. As in the usual
case on the compactified plane �2∪{∞} ≈
S2, the lumps scatter off along a line that
forms π/5 radians with the initial direction
of motion, but only when the lumps start
close to each other, away from the borders
of the fundamental square.

On the other hand, when the initial soli-
tons are placed farther from one another
the anisotropy of the torus cannot be ig-
nored, and the solitons do not show dual-
pentagon scattering.

We hope to report soon on scattering
results in other topological classes.

The author thanks the financial support
of CONDES-LUZ.
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Figure 1: Charge N = 5 lumps close to each other at t = 0. They show dual-polygon
scattering.
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Figure 2: Top: Superimposed configurations t = 0 and t = 1.5 from figure (1). We
observe π/5 scattering. Bottom: Charge N = 5 solitons starting far from the centre
(t = 0) do not scatter at 36 degrees (t = 3).
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