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Abstract: In this study ridge regression and artificial neural network (ANN) algorithm that does not require any 
assumption are applied on an economic data set with multicollinearity. The results are interpreted and 
compared. 
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1 Introduction 

The least squares estimators of the 
regression coefficients are the best linear unbiased 
estimators. That is, of all possible estimators that 
are both linear functions of the data and unbiased 
for the parameters being estimated, the least 
squares estimators have the smallest variance.  
 One of the assumptions of linear regression 
model is the independency of explanatory variables. 
If those variables are correlated with each other 
multicollinearity problem occurs. Multicollinearity 
is defined as the existence of nearly linear 
dependency among column vectors of the design 
matrix X in the linear model uXY += β . One way 
of explaining the structure of multicollinearity is to 
look over the eigenvalues and eigenvectors of the 
matrix XX ′ . One or more small eigenvalues show 
the existence of multicollinearity (Akdeniz and 
Erol, 2003).  

In the presence of multicollinearity 
minimum variance may be unacceptably large. 
Severe multicolinearity makes the estimates so 
unstable that they are practically useless and the 
matrix XX ′  becomes singular. To overcome this 
problem there are several biased estimation 
methods proposed by different authors including 
ridge regression (Hoerl and Kennard, 1970), Liu 
estimator (Liu, 1993). 

In this study firstly ridge regression among 
biased estimation methods is taken into account, 
afterwards appropriate ANN algorithm is defined. 
The advantages and disadvantages of using that 
algorithm are mentioned. An application study is 
given about economical indicators. The last part of 

the study the conclusions and recommendations are 
given.   
  
 
2 Ridge Regression 
Ridge regression is a popular method for dealing 
with multicollinearity builds on the fact that a 
singular square matrix can be made nonsingular by 
adding a constant to the diagonal of the matrix. The 
model is as in Eq.1. 
 
ˆ (Z'Z kI) Z'Y1β = + −      
     (1) 
 
Where k is called shrinkage parameter, I is the 
identity matrix. Z is the standardized design matrix 
using following standardization:  
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k changes between 0 and 1 and the estimation of 
the parameters change with the value of k. When 
k=0 we have the ordinary least squares estimator of 
β̂  of β . The goal is to choose k so as to minimize 
the mean squared error (MSE). However, MSE 
cannot be evaluated and therefore the choice of k is 
somewhat subjective. In order to overcome this 
problem an ANN algorithm is used to estimate 
regression parameter.   
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3 Radial Basis Functions Network  
Optimal ridge regression parameters can be 
estimated for linear feed forward networks in 
supervised learning problems. With radial basis 
functions (RBF) because of their local nature ridge 
regression with multiple adjustable regularization 
parameters performs a kind of locally adaptive 
smoothing. The optimization is performed using 
either unbiased estimate of variance or generalized 
cross validation and needs an initial guess for the 
values of the parameters. Parameters in both the 
initial guesses and the final optimal estimates 
whose value is infinity correspond to pruned basis 
functions (Orr, 1997).  

RBF networks have traditionally been 
associated with radial functions in a single-layer 
network as shown in Figure 1. The input layer is 
made of source nodes that connect the network to 
its environment. The second layer, the only hidden 
layer in the network, applies a non-linear 
transformation from the input space to the hidden 
space; one important point is the fact that the 
dimension of the hidden space is directly related to 
the capacity of the network to approximate a 
smooth input-output mapping (in most applications 
the hidden space is of high dimensionality). The 
output layer is linear, supplying the response of the 
network to the activation pattern applied to the 
input layer. 

 
 

Figure 1. The traditional radial basis function 
network. Each of n components of the input vector 
x feeds forward to m basis functions whose outputs 

are linearly combined with weights { } 1
m

w j j=
 into 

the network output f(x). 
 

A RBF network, therefore, has a hidden 
layer of radial units, each actually modeling a 
Gaussian response surface. Since these functions 
are nonlinear, it is not actually necessary to have 

more than one hidden layer to model any shape of 
function: sufficient radial units will always be 
enough to model any function. (Haykin, 1999; 
Bishop, 1995) 

In standard ridge regression for smoothing 
linear networks the cost function is made up of the 
usual sum-squared error plus a roughness penalty 
dependent on the squared length of the weight 
vector and a positive regularization parameter, k: 
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network for input x and weight vector w and 
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iii yx 1, =   is the training set. A generalization of 
this to the case of multiple regularization 
parameters, [ ]Tmkkkk K21=  (one for each basis 
function) is 
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 In the case of least squares applied to 
supervised learning with a linear model the 
function to be minimized is the cost function given 
in Eq. (4) used in ridge regression. Optimal weight 
vector is found as a result of this minimization as 
follows: 
 

( ) 1
ˆ ˆT Tw H H kI H ym

−
= +                  (5) 

where H is design matrix, has the vectors { } 1
m

h j j=
 

as its columns, and has p rows, one for each pattern 
in the training set.  
 An important point is that if the training set 
has been used to estimate the regularization 
parameter(s), as in ridge regression, or to chose the 
basis functions, as in forward selection, the 

( )TH H kIm+ =A is a stochastic variable and there 

is no longer a simple linear relationship between 
uncertainty in ŵ  and uncertainty in ŷ  (Orr, 1997). 
 Moreover RBF network has advantages: 
first, when we choose the ridge parameter k, we are 
able to choose a small number which is much more 
effective for smoothing the data. Further, by having 
the single parameter for adjusting the payoff 
between the two factors we can choose k 
appropriately so that we may vary any potential 
solution between the extremes of RBF and 
canonical correlation analysis depends on the needs  
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of any particular data set (Gou and Fyfe, 2003).  
 
4 Application 
In this part of the study a data set on Turkey’s GDP 
between 1988 and 2004 is analyzed both using 
ridge regression and ANN. The variables of the 
model are as follows: 
 
Y: GDP deflator 
X1: Money Supply 
X2: Money Supply (previous term) 
X3: Inflation rate 
X4: Exchange rate 
X5: Unemployment Rate 
X6: Harmonized Indices of Consumer Prices (HCIP 
%) 
X7: Interest Rate 
X8: volume of currency issued 
X9: Gross Domestic Product (% increase) 
 
 
 
 Ridge regression parameters are estimated 
for different k values. The estimates are given in 
Table 1. The standard errors of parameter estimates 
are given in Table 2.  
 
Table 1. Ridge estimates for different k values.  

Parameter Estimates 
k ( )k 1β%  ( )k 2β%  ( )k 3β%  ( )k 4β%  

0 
0.002 
0.004 
0.006 
0.008 
0.010 
0.020 
0.030 
0.040 
0.050 
0.100 
0.200 
0.300 
0.400 
0.500 
0.600 
0.700 
0.800 
0.900 
1.000 

36.0440 
32.7395 
30.3096 
28.4300 
26.9217 
25.6772 
21.6463 
19.3836 
17.9204 
16.9036 
14.6205 
13.7463 
13.6555 
13.6226 
13.5537 
13.4441 
13.3032 
13.1408 
12.9644 
12.7798 

1.4265 
1.0818 
0.8972 
0.8063 
0.7733 
0.7770 
1.0232 
1.3475 
1.6370 
1.8765 
2.5410 
2.9087 
3.0235 
3.0962 
3.1560 
3.2076 
3.2517 
3.2888 
3.3192 
3.3435 

183.6293 
152.1507 
130.0135 
113.6534 
101.1102 
91.2168 
62.6306 
49.3235 
41.8730 
37.2211 
27.9927 
23.6772 
22.0564 
21.0008 
20.1692 
19.4619 
18.8377 
18.2755 
17.7622 
17.2894 

55.5772 
50.8963 
47.5297 
44.9801 
42.9737 
41.3470 
36.2588 
33.4773 
31.6432 
30.2992 
26.4663 
22.9382 
20.9602 
19.5927 
18.5506 
17.7088 
17.0016 
16.3910 
15.8528 
15.3709 

Parameter Estimates 
k ( )k 5β%  ( )k 6β%  ( )k 7β%  ( )k 8β%  ( )k 9β%  

0 
0.002 
0.004 
0.006 
0.008 
0.010 
0.020 
0.030 
0.040 
0.050 

122.8257 
108.6168 
98.1327 
89.9824 
83.3981 
77.9212 
59.6520 
48.6540 
40.9302 
35.0602 

-74.8638 
-47.9658 
-29.2660 
-15.6267 
-5.3227 
2.6724 
24.5894 
33.5118 
37.6413 
39.5994 

155.4209 
143.0157 
133.5448 
125.9370 
119.5989 
114.1741 
94.8608 
82.1992 
72.8346 
65.4820 

141.3032 
133.2527 
126.9637 
121.8024 
117.4173 
113.5963 
99.4297 
89.6311 
82.1133 
76.0430 

114.6210 
102.1725 
93.0473 
86.0014 
80.3483 
75.6779 
60.3714 
51.4099 
45.2439 
40.6250 

0.100 
0.200 
0.300 
0.400 
0.500 
0.600 
0.700 
0.800 
0.900 
1.000 

18.1645 
4.7813 
-0.8582 
-3.8449 
-5.6174 
-6.7416 
-7.4840 
-7.9855 
-8.3275 
-8.5594 

39.9180 
34.9715 
31.2533 
28.5931 
26.5814 
24.9863 
23.6755 
22.5686 
21.6139 
20.7768 

43.4616 
25.5089 
17.8781 
13.8012 
11.3423 
9.7399 
8.6370 
7.8455 
7.2580 
6.8096 

56.8270 
39.2898 
30.6399 
25.3098 
21.6206 
18.8792 
16.7429 
15.0211 
13.5980 
12.3988 

27.5353 
16.9158 
11.9835 
9.0393 
7.0558 
5.6209 
4.5331 
3.6808 
2.9966 
2.4367 

 
 
Table 2. The standard errors of parameter estimates 

Standard Errors 
k ( )s[ k ]1β%  ( )s[ k ]2β%  ( )s[ k ]3β%  ( )s[ k ]4β%  

0 
0.002 
0.004 
0.006 
0.008 
0.010 
0.020 
0.030 
0.040 
0.050 
0.100 
0.200 
0.300 
0.400 
0.500 
0.600 
0.700 
0.800 
0.900 
1.000 

2.0535 
2.0007 
1.9597 
1.9255 
1.8955 
1.8684 
1.7575 
1.6686 
1.5927 
1.2720 
1.2792 
0.9923 
0.8222 
0.7070 
0.6231 
0.5587 
0.5078 
0.4664 
0.4320 
0.4029 

1.7590 
1.7380 
1.7183 
1.6994 
1.6812 
1.6637 
1.5840 
1.5145 
1.4530 
1.3980 
1.1893 
0.9430 
0.7969 
0.6977 
0.6248 
0.5685 
0.5234 
0.4861 
0.4548 
0.4279 

7.0552 
5.9322 
5.1411 
4.5547 
4.1031 
3.7449 
2.6866 
2.1621 
1.8433 
1.6253 
1.0858 
0.7093 
0.5498 
0.4596 
0.4010 
0.3596 
0.3285 
0.3041 
0.2844 
0.2681 

2.5022 
2.4106 
2.3416 
2.2852 
2.2368 
2.1938 
2.0223 
1.8887 
1.7765 
1.6796 
1.3345 
0.9695 
0.7751 
0.6534 
0.5695 
0.5079 
0.4607 
0.4231 
0.3924 
0.3669 

Standard Errors 
k ( )s[ k ]5β%  ( )s[ k ]6β%

 

( )s[ k ]7β%

 

( )s[ k ]8β%

 

( )s[ k ]9β%  

0 
0.002 
0.004 
0.006 
0.008 
0.010 
0.020 
0.030 
0.040 
0.050 
0.100 
0.200 
0.300 
0.400 
0.500 
0.600 
0.700 
0.800 
0.900 
1.000 

3.4315 
3.0718 
2.8255 
2.6461 
2.5089 
2.4000 
2.0633 
1.8707 
1.7338 
1.6263 
1.2849 
0.9501 
0.7707 
0.6551 
0.5734 
0.5121 
0.4642 
0.4257 
0.3941 
0.3674 

6.3244 
5.3511 
4.6681 
4.1636 
3.7764 
3.4700 
2.5672 
2.1176 
1.8406 
1.6478 
1.1494 
0.7752 
0.6079 
0.51 
0.4449 
0.3980 
0.3624 
0.3342 
0.3114 
0.2924 

3.1761 
2.9215 
2.7416 
2.6052 
2.4961 
2.4053 
2.0920 
1.8866 
1.7314 
1.6070 
1.2191 
0.8795 
0.7193 
0.6225 
0.5556 
0.5056 
0.4662 
0.4339 
0.4068 
0.3837 

2.4281 
2.2962 
2.2001 
2.1246 
2.0622 
2.0085 
1.8103 
1.6705 
1.5611 
1.4715 
1.1825 
0.9095 
0.7669 
0.6739 
0.6064 
0.5540 
0.5117 
0.4766 
0.4467 
0.4208 

2.8743 
2.5359 
2.3039 
2.1354 
2.0076 
1.9072 
1.6090 
1.4522 
1.3487 
1.5260 
1.0498 
0.8493 
0.7399 
0.6649 
0.6082 
0.5628 
0.5252 
0.4933 
0.4656 
0.4414 
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Figure 2. Ridge trace for Turkey’s GDP data 
 

k is chosen taken account the ridge trace 
given in Figure 2. k is defined as 0.3. Ridge 
estimates and related mean absolute error (MAE) 
value are given in Table 4.  
 
 
Table 3. The weights of RBFN for Turkey’s GDP 
data 
 
Network Weights 

 2.1 2.2 2.3 2.4 2.5 
1.0000 
1.0000 
0.1527 

1.0000 
0.3457 
0.2798 

1.0000 
0.7064 
0.6883 

1.0000 
0.6777 
1.0000 

1.0000 
0.7019 
0.3192 

Thresh 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 

1.0000 
1.0000 
0.3846 
1.0000 
0.7056 
0.4167 
0.0000 

0.5855 
0.3552 
0.3385 
0.6091 
0.5307 
0.5833 
0.8507 

0.6309 
0.3331 
0.2154 
0.5529 
1.0000 
0.4167 
0.0373 

0.7876 
0.4930 
0.0000 
0.7775 
1.0000 
0.0000 
0.9701 

0.5669 
0.2596 
0.4769 
0.5356 
0.5215 
0.8333 
0.5000 

Network weights    
 2.6 2.7 2.8 2.9 3.1 
Thresh 1.0000 1.0000 1.0000 1.0000 0.0036 

1.1 0.3299 0.1867 0.0000 0.0025  
1.2 0.1466 0.6260 0.1450 0.0000  
1.3 0.6370 0.5267 0.2101 0.0000  
1.4 0.3276 0.1004 0.0992 0.0000  
1.5 0.2462 0.4615 0.9076 1.0000  
1.6 0.5648 0.5032 0.3531 0.0000  
1.7 0.5307 0.4617 0.7056 -0.000  
1.8 0.6667 0.7500 0.1667 1.0000  
1.9 0.4925 1.0000 0.9776 0.7836  
2.1     0.0749 
2.2     0.0113 
2.3     -0.046 
2.4     0.0354 
2.5     0.0677 
2.6     -0.0517 
2.7     -0.0017 
2.8 
2.9     -0.0086 

-0.0711 

 
RBFN results of Turkey’s GDP data are 

calculated and weights are given in Table 3 and 
estimates of Y and MAE are given in Table 4.   
 
Table 4. Ridge estimates of Y for k=0.3 and RBF 
estimates of Y 
 

 
Y 
 

Ŷ  
(Ridge) 

Ŷ  
(RBFN) 

69.7 
75.5 
57.6 
59.2 
63.5 
67.4 
107.3 
81.9 
78.1 
81.2 
75.3 
55.8 
50.9 
55.3 
44.4 
22.5 
11.9 

71.43 
69.23 
60.41 
65.29 
67.37 
64.31 
100.57 
76.97 
70.99 
79.58 
73.52 
68.22 
52.67 
55.76 
35.82 
20.85 
24.48 

59.69 
75.50 
57.60 
59.20 
63.50 
59.19 
107.30 
79.59 
79.33 
81.20 
75.80 
55.80 
57.95 
55.97 
44.40 
31.36 
11.90 

MAE(Ridge)=4.91 
 MAE(RBF)= 2.28 
 

As can be seen in Table 4 the MAE value 
for RBFN is quite small than the MAE value for 
ridge regression. 
 
 
5 Conclusions and Recommendations 
Multicollinearity is a very common problem in 
multiple linear regression. Ridge regression is one 
of the biased methods that are used in order to 
overcome that problem. But choosing k in ridge 
regression is somewhat subjective. Hence in this 
study one of the algorithms of ANN, RBFN is used.    

As a criterion of comparison MAE for each 
model is calculated. It is seen that the RBFN result 
is better than ridge regression result.  

Another advantage of using RBFN is the 
researcher does not need to define a k value to 
make the best estimation. 

For the further studies also Liu estimators 
can be used and all results can be compared using 
MAE values. 
 
 
 
 

4th WSEAS Int. Conf. on NON-LINEAR ANALYSIS, NON-LINEAR SYSTEMS and CHAOS, Sofia, Bulgaria, October 27-29, 2005 (pp120-124)



 5

 
References 
 
[1] Akdeniz F. and Erol H, Mean Squared Error 

Matrix Comparisons of Some Biased 
Estimators in Linear Regression, 
Communication in Statistics, Theory and 
Methods, Vol. 32, No.12, 2003, pp.2389-2413. 

[2] Hoerl, A. E. and Kennard, R., Ridge Regression: 
Biased Estimation for Non-orthogonal 
Problems, Technometrics, 12, 1970, pp.55-67. 

[3] Gou Z. and Fyfe C., A Canonical Correlation 
Neural Network For Multicollinearity and 
Functional Data, Neural Networks, 17, 2004, 
pp. 285-293. 

[4] Liu, Ke Jian, 1993, A new class of biased 
estimate in linear regression. Communications 
in Statistics- Theory and Methods, 22(2):393-
402. 

 [5] Orr, M., MATLAB Routines for Subset 
Selection and Ridge Regression in Linear 
Neural Networks, Scotland, 1997, UK.  

[6] Haykin, S. (1999), Neural Networks: A 
Comprehensive Foundation, Prentice Hall Pub. 
Co. 

[7] Orr, M., 1995, Local smoothing of radial basis 
function networks, Symposium on Artificial 
Neural Networks, Hsinchu, Taiwan. 

 
 
 
 
Appendix  
 
 
Turkey’s GDP data  
 
Years Y  X1 X2 X3 X4  
1988 69.7 65.3 0 75.4 66 
1989 75.5 95.7 65.3 64.3 49 
1990 57.6 48.2 95.7 60.4 23 
1991 59.2 61.4 48.2 71.1 60.1 
1992 63.5 62.86 61.4 66.1 64.6 
1993 67.4 48.8 62.86 71.1 60.5 
1994 107.3 123.18 48.8 106.3 169.9
1995 81.9 99.36 123.18 88 53.2 
1996 78.1 132.76 99.36 80.4 77.8 
1997 81.2 93.47 132.76 85.7 87.1 
1998 75.3 101.87 93.47 90.7 71.6 
1999 55.8 96.11 101.87 70.5 61 
2000 50.9 42.45 96.11 39.1 48.4 
2001 55.3 48.04 42.45 68.5 96.4 
2002 44.4 30.99 48.04 29.7 22.8 
2003 22.5 33.67 30.99 18.4 -0.6 
2004 11.9 31.22 33.67 9.32 6.6 

Years X5 X6 X7 X8 X9 
1988 8 73.7 54 3.5 2.1 
1989 9 63.3 54 3.6 1.2 
1990 8.9 60.3 50.75 3.5 7.9 
1991 7.5 66 54.50 3.4 1.1 
1992 8.1 70.1 54.50 3.3 5.9 
1993 7.5 66.1 54.50 3.2 8 
1994 8.4 106.3 64 3.1 -5.5 
1995 7.2 93.6 57 2.9 7.2 
1996 6.3 80.4 57 2.6 7 
1997 5.9 85.7 80 2.6 7.5 
1998 6.4 84.6 80 2.5 3.1 
1999 7.3 64.9 80 3.1 -5 
2000 8.3 54.9 70 3 7.4 
2001 8.6 54.4 70 3 -7.6 
2002 11.8 46.4 64 2.8 7.6 
2003 12.3 25.3 48 3 5.8 
2004 12.4 13.7 25.66 3.8 5 
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