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Abstract
The paper presents a new effective approach for the construction of local Support Vector Machine (SVM) regression models for the

prediction of non-stationary data. We illustrate that an analysis in the framework of dynamical systems theory can provide critically useful
parameters for the effective training of the SVM predictors.

A correlation dimension parameter is approximated and is used in order to obtain an appropriate dimensionality for the input space of
the predictive SVM. The presented prediction framework can be utilized both for continuous signals and for the case where the observable
variable is a discrete symbol, a circumstance very common in data mining problems. Using the information extracted from the correlation
dimension computation, local Support Vector Machine models are trained and they are used only for local predictions.

We apply this methodology to the difficult problem of evaluating the predictability of DNA sequences. The results support the impor-
tance of the estimation of the proper dimensionality of the embedding space by means of the correlation dimension. Additionally, they
demonstrate the effectiveness of the presented SVM based prediction approach that is formulated under a dynamical systems reconstruc-
tion framework.
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1 Introduction
Observable temporal (e.g. stock market exchange rates) or spatial
sequence data (e.g. DNA sequence) are often the result of complex
and insufficiently understood interdependencies. Therefore, pre-
diction models make use of incomplete information, while other
factors not included in the models act as noise. In addition, most
physical processes are nonstationary, meaning that the data dis-
tribution is changing over time. For the DNA example, the non-
stationarity corresponds to location dependent dynamical rules of
sequence composition. For non-stationary domains, a single model
built on a certain data segment and used for all the subsequent pre-
dictions is generally inadequate. Forecasting these processes re-
quires on-line learning, where a given model is used for a limited
time and a new model is constructed whenever a change of the un-
derlying data distribution is detected.

The dynamic reconstruction problem concerns the approxima-
tion of the unknown function that describes the state evolution of
an unknown system [3, 10, 11, 12]. Usually, the state variables
and the equations that describe the evolution of the system are un-
known, only the measurements of a single output variable are avail-
able. However, by using the Takens theorem [9], we can describe
the present state of the system by embedding the system output
values into a set of lag-vectors. The embedding has the purpose of
creating a pseudo-state space, called the reconstruction space. The
dynamics of the original system that created the time series can be
reconstructed within the reconstruction space.

The Takens embedding theorem offers the potentiality to treat
the problem of dynamic reconstruction as a problem of approximat-
ing an unknown multidimensional function from only a finite num-
ber of available noisy input-output examples. However, we should
note that there is a distinction between the dynamic reconstruction
and the prediction problems. The ability to solve the prediction
problem does not always imply the potentiality to capture the dy-
namics of the underlying system. Dynamic reconstruction aims at
modeling the attractor state-space dynamics while for the predic-
tion problem we are concerned only with the short term prediction
task.

Therefore, the dynamic reconstruction problem should not be
considered as a function approximation problem but instead of as a
system approximation problem. The reconstructed system should
be as close as possible to the original one in terms of the invariants
of its dynamics [3]. The capability of the Support Vector Machine
for dynamic reconstruction of chaotic systems described with dif-
ferential equations (e.g. the Lorenz system) has been addressed by
Mattera and Haykin [5]. These authors have developed a mathe-
matically robust framework for dynamic reconstruction of chaotic
systems and have supported that the SVM method is superior to
a Regularized Radial Basis Function design (although they proved
that both methods exhibit common theoretical roots).

We concern the dynamic reconstruction problem for actual mea-
surements derived from unknown dynamical systems. Although
these systems are nonstationary, in the sense that their dynamical
rules of evolution do not remain constant but change over time,

we can consider them as constant over a small time frame. There-
fore, we can apply the tools of the dynamical systems theory and
the Support Vector reconstruction of the dynamics with a "moving
frame" like approach.

A related approach is the one proposed in [24, 25]. These au-
thors apply similar techniques for phase space reconstruction in
order to identify temporal patterns that are characteristic and pre-
dictive of significant events in a complex time series. In [24] an
optimization method based on genetic algorithms is defined in or-
der to detect interesting patterns at the reconstructed state space
while in [25] the approach is extended to evaluate also the degree
with which a candidate temporal pattern is characteristic and pre-
dictive of a significant event. However, these approaches are purely
unsupervised, while the presented one proceeds in the supervised
framework of dynamical systems identification.

We approximate a correlation dimension parameter in order to
obtain an appropriate dimension for the reconstruction space. This
measure has been widely explored for the construction of embed-
ding spaces for systems evolved according to continuous dynami-
cal rules for which continuous measurement variables are available
[13, 10, 11]. We attempt to adapt some concepts to the case where
the observable variable is a discrete symbol, a circumstance very
common in data mining problems. We use as a particular example
of a symbolic sequence the DNA sequence.

The next step of the presented prediction approach, is to utilize
the information extracted from the correlation dimension compu-
tation, in order to train local Support Vector Machine regression
models that they are used only for local predictions. The input
space dimensionality of these models is determined by the correla-
tion dimension.

We consider an application to the difficult problem of evaluat-
ing the predictability of DNA sequences. The results support the
importance of the estimation of the proper dimensionality of the
embedding space by means of the correlation dimension. Also,
they demonstrate the effectiveness of the presented Support Vector
Regression (SVR) prediction approach that is formulated under a
dynamical systems reconstruction framework.

Section 2 reviews the concept of the correlation dimension that
is applied in order to estimate a proper dimensionality for the em-
bedding space. Section 3 discusses the delay coordinates embed-
ding technique and deals with the subtleties of its application at
the dynamical systems reconstruction framework. Section 4 con-
siders the regression Support Vector Machine and its application at
the context of nonstationary signal prediction and dynamical sys-
tems reconstruction. Thereafter, Section 5 applies the methods to
the prediction of DNA sequence. Finally, the conclusions are pre-
sented along with directions for future work.

2 Correlation Dimension
This section attempts to formulate the intrinsic dimensionality of
a dataset in order to construct a proper preprocessing framework
for prediction. The computation of the correlation dimension al-
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lows the detection of the proper embedding dimensionality. We
note beforehand that we utilize also the concept of the embedding
dimensionality for symbolic attributes in a manner that resembles
the formulation for continuous dynamical systems.

The Embedding Dimension E, of a dataset is defined as the
number of attributes of the dataset. By the other hand, the Intrinsic
Dimensionality D is the dimensionality of the object represented
by the point set, regardless of the space where it is embedded. For
example, the intrinsic dimensionality of Euclidean objects equals
their Euclidean dimension, regardless of the dimension of the space
where they are embedded in. Thus, lines, circles and standard
curves have D = 1; planes, squares and surfaces have D = 2;
Euclidean volumes have D = 3, and so on.

The embedding dimensionality of a dataset can conceal the ac-
tual distribution of the data. For example, the DNA series exhibits
nonuniform distributions and correlations between attributes (nu-
cleotides in this case). However, the correlated nucleotides and the
specific type of correlation are usually not known. The intrinsic di-
mensionality D can indicate the existence of correlations and can
give an estimate of the number of attributes that are actually re-
quired to characterize a point set. At the context of DNA analysis
it offers a novel way to view the process. Indeed, the intrinsic di-
mensionality gives a lower bound of the number of nucleotides that
we have to retain in order to keep the essential characteristics of the
current state of the DNA sequence. The intrinsic dimensionality of
a dataset can be estimated by the correlation dimension metric that
is presented below.

Given a finite data set P , in order to compute the correlation
dimension. we analyze it in a range of scales (rlow, rup). We cover
its data points with a grid having cells of size r. We denote by
CP,i(r) the count of points of P that fall inside the grid cell i of
size r. The Correlation Dimension D2 is defined as [10, 11]:

D2 =
∂ log(

∑

i C2
P,i(r))

∂ log(r)
= c, rlow < r < rup (1)

Intuitively, D2 quantifies effectively how "dense" a set P is,
since irrespectively of the embedding space dimensionality, the nu-
merator depends only on the density of the set P at the space where
it lives (which owns a dimensionality equal to P ’s intrinsic dimen-
sionality). The Correlation Dimension D2 is of significant impor-
tance, since it accounts for the probability of finding one or more
points whose distance from a given point in the set is at most r, i.e.
it is related closely to the correlation concept.

The Sum of Squared Occupancy S2(r) measures sums of occu-
pancies over all grid cells. Let a point set P in an E-dimensional
space and an E-grid with cell side r. We denote as usual by CP,i

the count of points which fall inside the grid cell i (count of oc-
cupancy). Then the Sum of Squared Occupancy S2(r) is defined
as:

S2(r) =
∑

i

C2
P,i (2)

Also, given a point set P , the Correlation Integral C(r) of P is
defined as:

C(r) =

∑

Cnon−ordered(r)

N · (N − 1)/2
(3)

where Cnon−ordered(r) denotes the count of non-ordered pairs
< pi, pj >, i 6= j, pi, pj ∈ P within a distance r, i.e. dist(pi, pj) ≤
r, and N · (N − 1)/2 is the number of unique pairs < pi, pj > in
P . The pairs are non-ordered in the sense that we count < pi, pj >
and < pj , pi > only once. The correlation integral C(r) expresses
the fraction of pairwise distances smaller than r.

The Schuster Lemma [21] demonstrates that the correlation
integral C(r) is proportional to the sum of squared occupancies
S2(r), i.e.

C(r) = c · S2(r) (4)

with c a constant of proportionality.
Therefore, we can reformulate the definition of the correlation

dimension D2 of equation (1) by using instead of the term
∑

i C2
P,i

(that is the sum of squared occupancies S2(r), according to equa-
tion (2), the correlation integral C(r). Clearly, the new definition
of D2 as

D2 =
∂ log(C(r))

∂ log(r)
= constant, rlow < r < rup (5)

is equivalent to equation (1).
In practice, for a data set that exhibits self-similarity in a range

of scales (rlow, rup), the plot in log-log scale of C(r) versus r will
be close to a line in that range. The slope of the best fitted line in
that range will approximate the value of D2.

We should note at this point that since the D2 measure accounts
for the correlations that exist among the dimensions of the dataset,
it also represents the degree of freedom of each attribute in the
dataset. Therefore, D2 is a suitable measure for the characteriza-
tion of the intrinsic dimensionality. We will use the D2 measure
computed according to equation (5) in order to estimate the proper
dimensionality of the embedding space at the section that follows.
In turn, the effectiveness of the prediction support vector regres-
sion formulation depends critically on the correct estimation of the
embedding dimensionality, as the presented results illustrate.

3 Delay Coordinate Embedding
The mathematical background of the prediction formulation is based
on the celebrated method of delay coordinates embedding [9, 10,
11]. We assume the existence of an unknown complex underlying
process that determines the composition of the observed pattern.
For example, at the case of DNA prediction, this process deter-
mines the selection of the next nucleotide in a manner that depends
on the cell dynamics of the particular organism and the local com-
position of the previously constructed DNA chain. We cannot ob-
serve directly these processes, but we observe only their outcome,
e.g. the next nucleotide added to the chain.

This method allows the reconstruction of the dynamics from
the observed variable. Let assume that the dynamics of the signal
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can be described by a deterministic flow of N generally coupled,
nonlinear ordinary differential equations (ODEs),

dx

dt
= F(x), x = [x1(t), x2(t), . . . , xD(t)] (6)

where F = (f1, f2, . . . , fD) are unknown functions of the coordi-
nates x(t).

Let S(t) be a scalar observable depending on the system state
x(t) and obtained by a measurement process, which implements an
observation equation S(t) = h(x(t)). Specifically, in many cases
the scalar s(t) is the sampled value of the signal value at time t.

Given a time series of a scalar observable,

[S(t1), S(t2), . . . , S(ti), . . .], ∆ti = ti − ti−1 (7)

recorded at successive intervals, i = 1, 2, . . . , N , a vector XR(t),
whose coordinates are time-delayed copies of S(t) can be con-
structed as follows:

XR(ti) = [S(ti), S(ti − τ), . . . , S(ti − (m − 1) · τ)] (8)

where τ is the delay time and m is the dimensionality of the
embedding space. The mapping from the original state space x =
[x1(t), x2(t), . . . , xD(t)] to the space consisting of the time de-
layed observables of a single variable is called the delay coordinate
map.

The number of state variables that describe the system’s dy-
namics (i.e. x1, x2, . . . , xD) in Equation 6 determines the dimen-
sionality of the attractor. For dynamics corresponding to an attrac-
tor of state-space dimension D, a necessary condition for deter-
mining a XR(ti) able to reconstruct the original system dynamics
is m ≥ D. With a sufficiently large embedding dimension m,
XR(ti) unambiguously describes the state of the system at time ti,
thus there exists an equation for points on the attractor, which is of
the form

XR(t + p) = F ∗(XR(t)) (9)

The function F ∗ of equation 9 allows to predict future values of
the time series XR(t) given past values, with p being the prediction
horizon.

Takens [9] proved that there is an upper bound mupper

mupper ≤ 2 · Dc + 1

for the dimension m, such that a continuous function F ∗ of the
form of equation 9 that reconstructs the system dynamics can be
found within this bound. The parameter Dc is the dimensionality of
the underlying state space of the dynamical system. Although Dc

is unknown we estimate it by means of the correlation dimension,
that gives a rough estimate of the independent state variables of the
system. Therefore, the condition m ≥ 2 ·Dc + 1 is a sufficient but
not a necessary condition for dynamic reconstruction.

More accurately, the Takens theorem states that, under reason-
able conditions on the dynamics F of the system and the observa-
tion function h, the delay coordinate map from a Dc-dimensional

smooth compact manifold to R2·Dc+1 is a diffeomorphism 1 on
that manifold where Dc is the capacity dimension of the attractor
of the dynamical system.

Clearly, if the dimension m of the embedding space is too
small, the orbit constitutes a projection, which will tend to "fill"
completely the available m-dimensional state space. On the con-
trary, if m increases beyond a critical integer value mE , called the
embedding dimension, some of the main properties of the dynam-
ics are expected to remain unchanged and thus the correlation di-
mension of the reconstructed attractor remains constant as we in-
crease further the dimensionality of the embedding (i.e. the param-
eter m).

The procedure for finding a suitable m is called embedding.
The best dynamical reconstruction results are obtained when we
use the embedding dimension mE as the dimensionality of the de-
lay coordinate space. With smaller dimensionality we loss the at-
tractor’s structure. A utilization of greater dimensionality increases
significantly the inaccuracies from the noisy and also perplexes the
design of the prediction neural network, since as is well known neu-
ral network performance usually degrades fastly with the increas-
ing input space dimensionality. Furthermore, usually for applica-
tions that involve mining of spatio-temporal data, the dynamics of
the signal seem very nonstationary and can be modeled only lo-
cally by the on-line construction of local dynamical systems, valid
only in the neighborhood of the region on which they were trained.
Thus, in our case a long embedding vector (i.e. parameter m), is
improper and is not expected to produce correct results even in the
absence of noise.

The delay-embedding theorem implies that the evolution of the
points XR(n) → XR(n + 1) in the reconstruction space follows
that of the unknown dynamics x(n) → x(n + 1) in the original
space. This implies a powerful result: many important properties
of the unobservable state vector x(n) are reproduced without am-
biguity in the reconstruction space defined by XR(n) that evolves
according to the reconstructed dynamics described by Equation 9.
The developed Support Vector Machine (SVM) regression method
aims to estimate the prediction function 9 on the basis of time-delay
coordinates according to 8. From the above discussion it becomes
evident that the correct estimation of the embedding dimension mE

parameter and of the embedding delay τ from the time-series data
is critical for successful prediction.

4 Support Vector Prediction
The dynamical reconstruction problem is the problem of approxi-
mating the unknown function F ∗ of equation 9. In practice, usually

1The mapping f : U → V is said to be a diffeomorphism of U onto V if it
satisfies the following three conditions:

1. f(U) = V .
2. The mapping f : U → V is a one-to-one (i.e., invertible).
3. Each component of the inverse mapping f

−1 : V → U is continuously
differentiable with respect to its argument.
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only a few number of samples of the time series can be assumed to
be known. Unfortunately, for many data mining applications, we
are limited to a very small number of samples. The nonlinear re-
construction problem, can be stated as the problem of getting an
approximation F̂ of the function F ∗ when only noisy values as-
sumed by F ∗ in a small number of points are available. Therefore,
the Statistical Learning Theory and the accompaning implementa-
tion framework of Support Vector Machines (SVMs) [8] find a nat-
ural application for this type of dynamical reconstruction problem.
Some other approaches to the dynamical system reconstruction uti-
lize regularized Radial Basis Function networks [3, 15, 15]. How-
ever, the Support Vector Machine is based on the robust theory of
Empirical Risk Minimization developed by Vapnik [8] and allows
more disciplined model selection. Comparative experiments that
we have performed with Radial Basis Function networks proved a
superiority in favor of the Support Vector Machine.

The training set for the predictive SVM is constructed accord-
ing to the delay coordinates method presented in the previous sec-
tion. However, in order to be able to apply this important theory,
reliable estimates of the embedding dimension mE and of the em-
bedding delay should be obtained. We discuss some basic issues
arising in this rather complicated estimation problem.

Embedding Dimension
The sufficient condition m ≥ 2 · Dc + 1 makes it possible

to undo the intersections of an attractor’s orbit with itself. These
intersections can arise from projections of that orbit to lower di-
mensions. Frequently the embedding dimension mE is less than
2·Dc+1. Fortunately, there exist methods that estimate the embed-
ding dimension directly from the observable data. The method of
false nearest neighbors is one reliable choice for this task [12]. This
algorithm systematically for all the data points and their neighbors,
starting with dimension d = 1, then d = 2 and so on, examines
when their apparent neighbors stop being "unprojected" by the ad-
dition of more elements to the reconstruction vector S(n). The
value of d that halts the unprojection is a reliable estimate of the
embedding dimension. Another method is to estimate the corre-
lation dimension Dc of the attractor and to obtain the embedding
dimensionality as 2 · Dc + 1. We adopted the later method since
as we noted the correlation dimension concept allows also to gain
insight to the data’s intrinsic dimensionality.

Embedding Delay
The time τ is the time lag between successive values of the

scalar observable, i.e. it corresponds to the sampling period that
we use in order to extract state vectors from the scalar observable.
The proper prescription for choosing τ is to recognize that the nor-
malized embedding delay τ should be large enough for S(n) and
S(n−τ) to be in some extent independent of each other but not too
much independent in order to retain the geometry of the attractor.
This independence constraint allows to use them as coordinates of
the reconstruction space.

The main idea for Support Vector Prediction is to map the data
x into a high-dimensional feature space F via a nonlinear mapping
Φ, and to perform linear regression in this space, i.e. [7, 8, 16, 17,

19]
f(x) = (w · Φ(x)) + b (10)

with Φ:<n → F , w ∈ F and b is a threshold.
Thus, linear regression in a high dimensional feature space

corresponds to nonlinear regression in the low dimensional input
space <n. The dot product of Equation 10 between w and Φ(x),
w · Φ(x), would have to be computed in the high dimensional fea-
ture space F . The direct computation of this inner product is usu-
ally computationally intractable for most applications. However,
it can be computed efficiently in <n with the inner-product space
kernel function mapping trick. This avoids the need to compute
inner products in the high dimensional feature space F. Since Φ
is fixed, we determine w from the data by minimizing the sum of
the empirical risk Remp(f) and a complexity term ‖w‖2. The later
term enforces flatness in feature space. Therefore, the regularized
risk functional Rreg becomes:

Rreg(f) = Remp(f) + λ‖w‖2 =

N
∑

i=1

L(f(xi) − yi) + λ‖w‖2

(11)
where N denotes the sample size (x1, . . . ,xN ), L(.), is a loss func-
tion, and λ is a regularization constant [1, 3, 8]. A wide range of
loss functions exists for which equation 11 can be minimized by
solving a quadratic programming problem. This problem obtains a
global unique optimal solution and therefore the case for trapping
at local minima is avoided [8]. The vector w can be written in
terms of data points as:

w =
N

∑

i=1

(

αi − α∗

i

)

Φ(xi) (12)

with αi, α
∗

i being the solution of the quadratic programming prob-
lem mentioned earlier.

Taking Equations 10 and 12 into account, we can rewrite the
solution to the whole problem in terms of dot products in the low
dimensional input space:

f(x) =
∑N

i=1
(αi − α∗

i )(Φ(xi)Φ(x)) + b

=
∑N

i=1
(αi − α∗

i )k(xi,x) + b
(13)

In equation 13 we introduced a kernel function k(xi,xj) =
Φ(xi) · Φ(xj).

Effective computational methods exist for solving the above
quadratic programming problems [4, 6]. We used the method of
Joachims [4], implemented with the public available software pack-
age SVMLight. Therefore, a particular loss function does not seem
to own a clear advantage, at the specific prediction applications.
As a kernel type, we found that the Radial Basis Function kernel
obtained the best results. The next section presents and discusses
the DNA sequence prediction application.
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5 Application
We present an application of the presented framework for the pre-
diction of non-stationary data. The application deals with the pre-
diction of DNA sequences. The prediction of the DNA sequences,
concerns prediction at the symbolic domain and thus is quite differ-
ent from the prediction of numeric time-series. DNA series from
different species are expected to present quantitatively different
predictabilities. Additionaly, different segments of the eukaryotic
DNA (e.g. coding regions, regulatory regions, repetitive elements)
are expected to impose their own limitations to prediction. The pre-
dictability outcomes with increasing prediction horizon fall grace-
fully. This fact seems to indicate long range dependencies at the
dynamical process of DNA construction.

The methodology that we have used has the following basic
steps:

• We use annotated DNA segments for well studied organisms
(e.g.E-coli, S-cerevisia, mouse, Homo-sapiens) and we cre-
ate a simple numeric representation (e.g. 0 for adenine, 1 for
thymine, 2 for guanine, 3 for cytosine).

• We evaluate the Correlation Dimension of the DNA signal.
In order to compute the Correlation Dimension of the DNA
signal we read the encoded nucleotides creating a data ma-
trix. The distance between the patterns is computed as the
number of different nucleotides they have, normalized prop-
erly in order to fit the range of radius on which we evalu-
ate the fractality of the signal. Using a dense sampling of
radius we compute the Correlation Dimension according to
Equation (1). Using the simple numeric representation we
obtain a Correlation Dimension estimate of about 7.6. Fig-
ure 1 illustrates the computation. This implies that accord-
ing to the nonlinear systems theory we expect to obtain a
proper embedding for an embedding dimension of greater
than 2 · 7.6 + 1, i.e. for a time delay vector of a dimension
of 17. Indeed, we have verified that the prediction results are
optimized for embedding vectors in the range of 16-18.
Alternatively, we can utilize different more sophisticated rep-
resentations of the DNA sequence [22] as the Chaos Game
Representation (CGR) [23]. At the later representation, the
positions CGRI , of each nucleotide, gi, of a sequence, g
of length nG, is calculated by moving a pointer to half the
distance between the previous position and the current bi-
nary representation (equation 14). The binary CGR vertices
are assigned to the four nucleotides as A = (0, 0), C =
(0, 1), G = (1, 1), T = (1, 0). Then the computation pro-
ceeds as:

CGRk = CGRk−1 + 0.5 · (CGRk−1 − gk),
k = 1, . . . , nG, CGR0 = (0.5, 0.5)

(14)

The Chaos Game Representation offers more compact encod-
ing of the DNA sequence and yields a correlation dimension esti-

mate of 2.6. Therefore, the theoretical optimal embedding dimen-
sion space is 6. We have verified that the bset results are obtained
at about this theoretically expected value, i.e. for embedding vec-
tors of dimension 6 or 7. Figure 2 illustrates the prediction results
deteriorate significantly for large embedding vectors, due to the ef-
fects on neural training of the curse of dimensionality (since the
dynamical systems theory we know that a larger embedding di-
mensionality from the one required does not alter the structure of
the attractor [11, 10]).

• We specify the parameters of the local SVM model that will
be trained in a local moving frame in order to predict the
next nucleotide. The underlying dynamics that determine the
composition of the DNA seem to exhibit long-range correla-
tions. The predictability outcomes with increasing predic-
tion horizon (i.e. by trying to predict two nucleotides ahead
instead of one) fall gracefully. This fact seems to indicate
long range dependencies at the dynamical process of DNA
construction.
We succeed relatively well to predict the next nucleotide, and
for a few nucleotides ahead the results are still good (the abil-
ity to predict falls slowly). Predictability is completely lost
only for a large number of nucleotides ahead (about 50-60).
Other parameters that need specification concern the type of
the SVM model. We consider the SVM with radial basis
kernel as a particularly effective model.

6 Conclusions
We have applied a new SVM prediction framework for the analysis
of non-stationary signals. We have demonstrated the importance of
the correct evaluation of the embedding space dimensionality and
we have used the correlation dimension measure as a means to esti-
mate a proper embedding dimensionality. Therefore the analysis of
the time-series data in the framework of dynamical systems theory
can provide critically useful parameters for the effective training of
SVM predictors.

We have presented the development of local Support Vector
prediction models for the prediction of non-stationary time series.
We demonstrate that the same methods can be used for another dif-
ficult problem that involves discrete symbols: the prediction of the
DNA sequence. In this case, the results provide additional support
for the importance of the estimation of the proper dimensionality
of the embedding space by means of the correlation dimension.

Much future work remains in order to obtain better insights
to more effective approaches for utilizing the dynamical systems
theory at the development of better Support Vector prediction ma-
chinery. The utilization of the improved support vector algorithms
[17, 16] and of alternative implementation approaches [19, 6] per-
haps can improve further the results. Also, alternative machine
learning approaches [18, 20] need to be developed for these prob-
lems, in order to be able to compare the strengths and the weakness
of the support vector approach with them.
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Figure 1: The Correlation Dimension Computation for the DNA signal obtains an estimate of about 7.6

Figure 2: The prediction error is much smaller for embedding dimension D=6, i.e. for an embedding dimension value near the predicted
value
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