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Abstract: In this paper receptor-based Cellular
Neural Network model is considered. Dynamics
and stability of such model are studied by apply-
ing describing function technique. Comparison
of the obtained results with the classical ones is
made as well.
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1 Introduction

Spatial and spatio-temporal patterns occur
widely in physics, chemistry and biology. In
many cases, they seem to be generated spon-
taneously. These phenomena have motivated
a great deal of mathematical modelling and
the analysis of the resultant systems has led
to a greater understanding of the underlay-
ing mechanisms. Partial differential equa-
tions of diffusion type have long served as
models for regulatory feedbacks and pattern
formation in aggregates in living cells. In this
work we proposed receptor-based models for
pattern formation and regulation in multi-
cellar biologicalm systems. The systems de-
scribing our models are composed of both
diffusion-type and ordinary differential equa-
tions. Such systems cause some difficulty,
since both existence and behavior of the so-
lutions are more difficult to establish. Many
aspects of qualitative behavior have to be in-
vestigated numericallly. For this purpose we
apply the Cellular Neural Networks (CNN)
approach for studying such models.

CNN is simply an analogue dynamic pro-
cessor array, made of cells, which contain
linear capacitors, linear resistors, linear and
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nonlinear controlled sources. Let us consider
a two-dimensional grid with 3 x 3 neighbor-
hood system as it is shown on Fig.1.
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Fig.1. 3 x 3 neighborhood CNN.

The squares are the circuit units - cells,
and the links between the cells indicate that
there are interactions between linked cells.
One of the key features of a CNN is that
the individual cells are nonlinear dynamical
systems, but that the coupling between them
is linear. Roughly speaking, one could say
that these arrays are nonlinear but have a
linear spatial structure, which makes the use
of techniques for their investigation common
in engineering or physics attractive.

We will give the general definition of a
CNN which follows the original one:

Definition 1 The CNN is a

a). 2-, 3-, or n- dimensional array of

b). mainly identical dynamical systems,
called cells, which satisfies two properties:

¢). most interactions are local within a fi-
nite radius r, and

d). all state variables are continuous val-
ued signals.



Definition 2 An M xM cellular neural net-
work is defined mathematically by four spec-
ifications:

1). CNN cell dynamics;

2).  CNN synaptic law which represents
the interactions (spatial coupling) within the
neighbor cells;

3). Boundary conditions;

4). Initial conditions.

Now in terms of definition 2 we can present
the dynamical systems describing CNNs. For
a general CNN whose cells are made of time-
invariant circuit elements, each cell C(ij) is
characterized by its CNN cell dynamics :

(1)

where z;; € R™, w;; is usually a scalar.
In most cases, the interactions (spatial cou-
pling) with the neighbor cell C'(i + k,7 + 1)
are specified by a CNN synaptic law:

Tij = —9(@ij, uij, 1),
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The first term A;j @ik, j41 of (2) is simply
a linear feedback of the states of the neigh-
borhood nodes. The second term provides an
arbitrary nonlinear coupling, and the third
term accounts for the contributions from the
external inputs of each neighbor cell that is
located in the N, neighborhood.

It is known [3,6] that some autonomous
CNNs represent an excellent approximation
to nonlinear partial differential equations
(PDEs). In this paper we will present the
receptor-based model by a reaction-diffusion
CNNs. The intrinsic space distributed topol-
ogy makes the CNN able to produce real-
time solutions of nonlinear PDEs. Consider
the following well-known PDE, generally re-
ferred to us in the literature as a reaction-
diffusion equation [1]:
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ot
where v € RN, f € RN, D is a matrix
with the diffusion coefficients, and V2u is the

(u) + DV?u,

Laplacian operator in R?. There are several
ways to approximate the Laplacian operator
in discrete space by a CNN synaptic law with
an appropriate A-template.

In Section 2 we introduce the receptor-
based model. Section 3 deals with its CNN
model and the dynamical behavior of the
model together with numerical simulations.

2 Receptor-based models

The simplest model describing receptor-
ligand is given in the form of three equations.
It takes into consideration the density of free
receptors, of the bound receptors and of the
ligands. We use a representation of this sim-
plest receptor-based model that is as generic
as possible and based on the scheme shown
in Fig.2.

as

gs

gi a1

e.C. fr.

Fig.2. General scheme of the simplest
receptor-based model.

We consider one-dimensional epithelial
sheet of length L. We denote the concen-
tration of ligands by w(x,t), where z and ¢
are space and time coordinates, with z in-
creasing from 0 to L along the body col-
umn. The bound and free receptors densities
are denoted by u(,t) and v(x,t) respectively.
For simlicity we assume that all binding pro-
cesses are governed by the law of mass action
without saturation effects. The model is de-
scribed by the following dynamical system:



0
au = fi(u,v,w) (3)
0
&v = faolu,v,w)
0 02
&UJ = d@w +f3(u,?),’u)),

where u,v,w : [0,1] x RT — R*, functions
fi,i = 1,2,3 are nonnegative for nonnegative
arguments and they have the following form:

f1=—a1u+ g1(u,v) — buw + cv,

fo = —asv + buw — cv,
f3 = —asw — buw + g3(u,v) + cv,

a; > 0,2 =1,2,3, b,c > 0. We will suppoce
that the functions g;,7 = 1, 3 are of quadratic
form, i.e. g;(u,v) = g;u?. The model has bi-
ological interpretation for such functions [7].

3 CNN model and its dy-
namics

As we mentioned above there are several
ways to approximate the Laplacian opera-
tor in discrete space by a CNN synaptic law
with an appropriate A-template [2]. In our
case we will take one-dimensional discretized
Laplacian template:

A:(1,-2,1).

Therefore the CNN representaion for our
reseptor-based model (3) will be the follow-
ing:

du;

d—t] = —au; + gw? —bujw; +cv;  (4)
dvj

T = —av; + bujw; — cvj

dw;

d—t] = —azw; +d(wj—1 — 2w; + wj1) —

2
= bujw; + gsuj + cvj,

1 < j < N. The above equation is actualy
ordinary differential equation which is iden-
tified as the state eugation of an autonomous

CNN made of N cells. For the output of our
CNN model we will take the standard sig-
moid function [2].

In this section we will introduce an approx-
imative method for studying the dynamics of
CNN model (4), based on a special Fourier
transform. The idea of using Fourier expan-
sion for finding the solutions of PDEs is well
known in physics. It is used to predict what
spatial frequences or modes will dominate in
nonlinear PDEs. In CNN literature this ap-
proach, has been developed for analyzing the
dynamics of CNNs with symmetric templates
[4,5].

In this paper we investigate the dynamic
behavior of a CNN model (4) by use of Har-
monic Balance Method well known in control
theory and in the study of electronic oscilla-
tors [5] as describing function method. The
method is based on the fact that all cells in
CNN are identical [2], and therefore by intro-
ducing a suitable double transform, the net-
work can be reduced to a scalar Lur’s scheme
[5].

We shall study the dynamics and the sta-
bility properties of (4) by using the describ-
ing function method [5]. Applying the dou-
ble Fourier transform:

k=00 00
F(s,z) = Z zk /_oo fr(t)exp(—st)dt,

k=—00

to the CNN equation (4) we obtain:

sU —a U 4+ giU* —bUW +cV  (5)
sV = —aV+bUW —cV
sW —asW +d(z7'W — 2W + 2W) +

+ @UEUW +cV.

Without loss of generality we can denote
N(U,V,W) = g;U? — bUW + ¢V and then
we obtain from (5):

1
U = N (6)
s+ aq
1
V = N
S+ ag
1
W = N




In the double Fourier transform we sup-
pose that s = iwg, and z = exp(iQ), where
wp is a temporal frequency, Qg is a spatial
frequency.

According to the describing function
method, H(s,z) = s+a3_§(";‘111_2+z) is the
transform function, which can be presented
in terms of wy and Qp, ie. H(s,z) =
HQO (wg).

We are looking for possible periodic state
solutions of system (5) of the form:

Xao(wo) = Xmgsin(wot + 7Q0),  (7)

where X = (U, V,W). According to the de-
scribing function method we take the first
harmonics, i.e. 7 =0 =

Xa,(wo) = Xy sinwot,

On the other side if we substitute s = iwy
and z = exp(i)y) in the transfer function
H (s, z) we obtain:

1w + ay

H = .
2 (o) iwp + a3 — d(2cosy — 2)

(8)

According to (8) the following constraints
hold:

R(Hopwo) = 32 ()
3(Hay (w0)) = 0.

Hence, we obtain the following constraints:

1

= 10
o az — a1 + d(2cosQy — 2) (10)
4 . 1
Xy = ;[XmoArcsm(Xmo) +
1
1——].
X,QnO]

Suppose that our CNN model (4) is a finite
circular array of N cells. For this case we
have finite set of frequences:

_ 27k

Oy = — <k<N-1. 11
0 NaO_k_ ( )

Thus (9), (10) and (11) give us necessary set
of equations for finding the unknowns X,,,,

wp, 9. As we mentioned above we are look-
ing for a periodic wave solution of (5), there-
fore X,,, will determine approximate ampli-
tude of the wave, and Ty = 520_7(: will determine
the wave speed.

Proposition 1 CNN model (}) of the
receptor-based system (3) with circular ar-
ray of N cells has periodic state solutions
zj(t) with a finite set of spatial frequences
Q=2 0<k<N-L

Remark 1 For the Turing-type instability
[7], the functions describing production of
free receptors (f.r.) must depend on the den-
sity of f.r. and this dependence must be a
power function of the order o + 1, where
a > 0. Hence, Turing type patterns can
occur if gi(u) = g1u®t', a > 0. This func-
tion can depend also on the density of bound
receptors (b.r.), but also it is critical here
that it depends on the density of f.r. For
numerical simulations the simplest function
fulfilling the above condition is used, namely
g1(u) = giu®. To model the production rate
of ligands (1.) g3 we also take a function of
the concentration of free receptors. In nu-
merical simulations a function similar to g;
is used g3(u) = gzu?.

The following bifuraction diagrams are ob-
tained for functions u,v,w (Fig.3,4,5).

4 Conclusions

We showed that Turing-type patterns can
be obtained in a receptor-based CNN model.
The Turing-type mechanism [7] is one of the
simplest theories for the biological pattern
formation. In models with such mechanism
patterns can arrise spontaneously. The pa-
rameters must be tightly controlled to obtain
the instability at the desired point in param-
eter space. From the simulations (Fig.3,4,5)
it appears that the model (4) cannot exibit
a wave bifurcation. We carry out our simu-
lations for the following set of parameters:
ar = 0.2, ag = 0.02, a3 = 0.2, b = 0.7,
g1 = 1466, g3 = 2, ¢ = 0.02672. In



summary, we showed that for the simplest
receptor-based model consisting of 3 equa-
tions, Turing-type patterns can arrise only
if there is a self-enhancement of free recep-
tors. The final pattern strongly depends on
the initial perturbation.
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Fig. 3. The bifurcation diagrams for the
first equation of the CNN model (4).
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Fig. 4. The bifurcation diagrams for the
second equation of the CNN model (4).
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