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Abstract— In mixtures of speech signals the energy content of the components of the mixture is important and 
determine the structure of the mixture. Energy contents of signals are better shown when time-frequency or 
time-scale planes are used. In this paper we present a comparison of wavelet transform (WT) and short time 
Fourier Transform (STFT) in spectral analysis of speech signals. We will show in wavelet domain, speech 
signals are very uncorrelated and sparsity of signal is increased. 
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1 Introduction 

Blind source separation problem is relatively new 
and an important signal processing issue. It involves 
recovering unknown sources by using only mixtures 
of them [1]. Generally it is assumed that sources are 
statistically independent from each other and at 
most one of them could be Gaussian [2]. Recently, 
time-frequency representation (TFR) algorithms 
have been developed by many researchers [3] 
which in many cases could be considered as very 
powerful signal processing tools. In [1] and [4] 
wigner-ville representation is used to separate up to 
three speech signals from single observed mixture. 
They assumed that the time-frequency signatures of 
sources are disjoint. In [5] it is assumed that speech 
signals are windowed disjoint orthogonal in time-
frequency and can separate speech sources from 
two mixtures of speech signals. In [6] and [7] it is 
assumed that speech and music representations are 
sparse and using frequency domain analysis, speech 
signal is separated from music. In [8] a solution for 
the blind source separation problem by shifting the 
problem to time-frequency domain and applying 
independent component analysis (ICA) algorithm is 
presented. In [9] using STFT, an algorithm is 
proposed for separation of heart beat cycles. Other 
time-frequency methods have been developed 
during the past decades applicable to different 

fields. One can find most of them with detailed 
references in [10], [11], [12], [13]. 

 
2 Backgrounds 
 
2.1 Time-Frequency 

In many applications such as speech processing, 
we are interested in the frequency content of a 
signal localized in time. The reason is that the 
signal parameters such as frequency content change 
over time. In other words these signals are non-
stationary. For a non-stationary signal, s(t), the 
standard Fourier Transform is not useful for 
analyzing the signal. Information which is localized 
in time such as spikes and high frequency bursts 
cannot easily be detected from Fourier Transform. 
Time localization can be achieved by first 
windowing the signal so as to cut off only a well-
localized slice of s(t) and then taking its Fourier 
Transform. This gives rise to the short time Fourier 
Transform or windowed Fourier Transform. The 
magnitude of the STFT is called spectrogram. The 
Short Time Fourier Transform of a signal s(t) using 
a window function w(t) is defined as : 

( , ) ( ( )) ( ) ( )S j tSTFT s t s t w t e dtωτ ω τ
∞

−∞

−= = −∫     (1) 

As the window w(t) slides along the signal s(t), 
for each shift τ, the usual Fourier Transform of the 
product function s(t)w(t-τ) is calculated. In two 
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dimensional plots of the spectrogram is made with 
time on the horizontal axis, frequency on the 
vertical axis and amplitude given by a gray-scale 
colors. Therefore three dimensional plots are made 
with the amplitude on the third axis. 
 
2.2 Wavelets 

Wavelets are a set of basis functions generated by 
dilation and translation of a compactly supported 
scaling function ψj,k(t), and basis function φ(t), 
associated with an r-regular multi-resolution 
analysis of L2(R). Many types of functions 
encountered in practice can be sparsely and 
uniquely represented in terms of a wavelet series 
[14]. 

 
Wavelet transform method has received great deal 

of attention over the past several years. The wavelet 
transform is a time-scale representation method that 
decomposes signals into basis functions of time and 
scale, which makes it useful in applications such as 
signal de-noising, wave detection, data 
compression, feature extraction, etc. There are 
many techniques based on wavelet theory, such as 
wavelet packets, wavelet approximation and 
decomposition, discrete and continuous wavelet 
transform, etc. Wavelets are generated according to 
the following equation from a mother wavelet as 
[14]: 
 

/2( ) 2 (2 ),
j

j jt t kj kψ ψ= −∑        (2) 

 
A wavelet system is a set of building blocks to 

construct or represent a signal or function. It is a 
two dimensional expansion set whose linear 
expansion would be: 

 

0

( ) ( ) (2 ),
k k j

js t c t k d t kk j kϕ ψ
+∞ +∞ +∞

=−∞ =−∞ =

= − + −∑ ∑∑    (3) 

 
Most of the results of wavelet theory are 

developed using filter banks and in applications one 
never has to deal directly with the scaling functions 
or wavelets, only the coefficients of the filters in the 
filter bank are needed. The wavelet decomposition 
for three scales is shown in Fig. (1), where LP and 
HP denote low-pass and high-pass filters 

respectively.

 
Fig. 1) Wavelet decomposition of a signal by filter banks 
 
3 Discussions and Results 

In this paper we compare the time-frequency and 
time-scale features of speech signals by using short 
time Fourier Transform and wavelet transform. We 
will show that speech signals are more orthogonal 
in WT domain than STFT domain and sparsity of 
signal increases and therefore it is a better domain 
for speech separation. We used about 100 speech 
signal from TIMIT databases. Each signal is two 
seconds long in time. Each signal is normalized for 
unit energy and their averages are removed, then 
spectrogram of signals are computed by utilizing a 
hamming window that has 256 samples. Let s(t) be 
the signal and w(t) be the hamming window, then 
the spectrogram of  the windowed signal is given 
as: 
 

2( , ) { ( ). ( )}FFT s t w tτ ω τ= −S      (4) 
 

The cross-energy of the windowed si(t) and sj(t) in 
time-frequency domain is defined as : 

,

,

( , )ij i jE d d
τ ω

τ ω τ ωε = ∫∫     (5) 

where 
( , ) ( , ) ( , )

,

                
, ,

                 =
, ,

E S S
i j i j

s s
i kl j klN N N N

s s
i kl j kl N N
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⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
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= ×

= ×
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      (6) 

With    k=1 ,2 ,…, N and l=1 ,2 ,…, N. 
 

In equation (6), Sp(τ,ω) is N dimensional matrix 
and sp,kl is its kth row and lth column entry. Any non-
zero entries in matrix Eij(τ,ω) means that both 
signals si(t) and sj(t) have considerable energies in 
their corresponding TFR planes, and therefore we 
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consider this location in the time-frequency plane as 
a common energy location. The speech signals 
shown in Fig. (2) are used for time-frequency 
domain analysis as well. The spectrogram of the 
speech signals are calculated according to equation 
(4) and are shown in Fig. (3). 
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Fig. 2) Eight of the speech signals used for analysis 

 
Using equation (5), the cross-energies of each 

signal in Fig. (2) with rest of the signals are 
calculated, and results are shown in table (1) and 
four of the cross-spectrogram of signals are shown 
in Fig. (4). In table (1) every entry shows 
percentage of cross-energies of two speech signals. 
For example, εi,j=1.2176 for i=2 , j=4 means that 
s2(t) and s4(t) have %1.2176 cross-energy in time-
frequency plane. Note that table (1) would be 
symmetrical about its diagonal, where for sake of 
simplicity the lower part of the table is omitted. 
 

Table 1) Percentage of cross-energy of speech 
signals in TF domain 

 
j=8 j=7 j=6 j=5 j=4 j=3 j=2 εi,j 
0.102 0.128 0.369 0.287 0.940 0.369 0.297 i=1 
0.137 0.130 1.188 0.103 1.218 1.188 - i=2 
0.260 0.245 8.598 0.198 0.694 - - i=3 
0.061 0.129 0.684 0.254 - - - i=4 
0.331 0.290 0.195 - - - - i=5 
0.259 0.245 - - - - - i=6 
0.317 - - - - - - i=7 
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Fig. 3) spectrogram of speech signals shown in Fig. (2) 

 

 
Fig. 4) Cross-energy of signals shown in Fig. (2) in  

STFT domain 
 
We decompose speech signals in space-time by 

WT and define energy of signal in scale j as: 
2
   j jk

k

E d=∑          (7) 

,( ) ( )jk j kd s t t dtψ
∞

−∞

= ∫     (8) 

The energy distribution in WT domain could be 
calculated as: 

2
( , ) jkj k d=E     (9) 

 
Using Parsaval’s theorem, energy of the signal 

could be computed using wavelet coefficients 
according to equation (7). Time-scale distribution 
of the energy of signals shown in Fig. (2) are 
plotted in Fig. (5). We define cross-energy of Sn(t) 
and Sm(t)  in time-scale as: 

, , ( , )n m n m
j k

E j kε =∑∑   (10) 
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With    k=1 ,2 ,…, N and l=1 ,2 ,…, N. 
 

In equation (11), Ep(j,k) is N dimensional matrix 
and ep,kl is its kth row and lth column entry. Any non-
zero entries in matrix En,m(j,k) means that both 
signals sn(t) and sm(t) have considerable energies in 
their corresponding time-scale planes, and therefore 
we consider this location in the time-scale plane as 
a common energy location. The speech signals 
shown in Fig.(2) are used for wavelet domain 
analysis as well. The scalogram of the speech 
signals are calculated according to equation (7) , (8) 
and are shown in Fig. (5). 
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Fig. 5) scalogram of speech signals shown in Fig. (2) 

 
Using equation (10), the cross-energies of each 

signal in Fig. (1) with rest of the signals are 
calculated, and results are shown in table (2) and 
four of the cross-scalograms are shown in Fig. (6). 
In this table each entry shows percentage of cross-
energies of two speech signals. For example, εm 
,n=0.1080 for m=2, n=4 means that s2(t) and s4(t)  
have  %0.1080 cross-energy in time-scale plane. 
Again, the lower part of  the table (2) is not shown. 
 

 
Fig. 6) Cross-energy of speech signals in wavelet domain 

 
Table 2) percentage of cross-energy of speech 

signals in wavelet domain 
 

n=8 n=7 n=6 n=5 n=4 n=3 n=2 εm,n 
0.009 0.008 0.021 0.018 0.027 0.021 0.022 m=1 
0.007 0.007 0.035 0.009 0.108 0.035 - m=2 
0.009 0.005 0.296 0.013 0.022 - - m=3 
0.004 0.005 0.022 0.019 - - - m=4 
0.126 0.015 0.013 - - - - m=5 
0.009 0.005 - - - - - m=6 
0.013 - - - - - - m=7 

 

4 Conclusions 
As is stated, it is well knew that sparsity of 

signals increase in wavelet domain. We have used 
this characteristic in speech source separation. Both 
in time-frequency and time-scale domains, cross-
energies of speech signals are calculated. We have 
shown that cross-energies of speech signals have 
less common regions in time-scale plane than STFT 
time-frequency planes. The cross-energies of both 
domains are summarized in tables (1) and (2) and 
plotted in figures (4) and (6). By comparing these 
tables and figures the difference are revealed. As 
we see in table (2) the cross-energies have 
decreased in wavelet domain which is direct 
consequences of wavelet transform properties. We 
can therefore state that orthogonality of speech 
signals used in wavelet domain has increased and 
sparsity of signals are better than STFT domain. 
Therefore if wavelet domain is used in separation 
problem, we can separate sources from mixtures 
much better in wavelet domain than STFT. 
 
5 References 
 
1) A. Mansour, A. Kardec Barros, and N. Ohnishi, 

“Blind separation of sources: Methods , 
assumptions and applications.” IEICE 
Transactions on Fundamentals of Electronics, 

5th WSEAS Int. Conf. on WAVELET ANALYSIS and MULTIRATE SYSTEMS, Sofia, Bulgaria, October 27-29, 2005 (pp31-35)



 5

Communications and Computer Sciences , Vol. 
E83-A, no.8, pp. 1498-1512, August 2000. 

2) P. Comon, “Independent component analysis, a 
new concept ?,” Signal processing, Vol. 36, 
no.3, pp. 287-314, April 1994. 

3) P. Flandrin, “Time-frequency/Time-scale 
analysis,” volume 10 of Wavelet Analysis and 
its Applications, Academic Press, Paris, 1999. 

4) A. Mansour, M. Kawamato, C. Puntonent, “A 
time-frequency approach to blind separation of 
under-determined mixture of sources,” 
Proceeding of the IASTED International 
Conference APPLIDE SIMULATION AND 
MODELLING September 3-5, 2003, Marbela, 
Spain 

5) O. Yilmaz , S. Rickard , “Blind Separation of 
Speech Mixtures via Time – Frequency 
Masking,” IEEE Transaction on signal 
processing , November 4 , 2002 

 
6) Bofill P. , “Underdetermined Blind Separation 

of Delayed Sound Sources in the frequency 
Domain ”, submitted to Neurocomputing , 
special issue ICA and BSS, 2 march 2001. 

7) Bofill P. and Zibulevsky M. , 
“Underdetermined Blind Source Separation 
using Sparse Representations” , submitted to 
Signal Processing, 2000  
http://www.ac.upc.es/homes/pau/ 

8) Dr. S. Jayaraman , G. Sitaraman , R. Seshadri, “ 
Blind source separation of acoustic mixtures 
using time-frequency domain independent 
component analysis,” IEEE conference, 
ICCS2002, Nov. 2002, Vol.3, pp. 1383- 1387 

9) M.A. Tinati , A. Bouzerdoum , J. Mazumdar, 
L.J. Mahar, “Time-Frequency analysis of heart 
sounds befor and after angioplasty,”13th int. 
conf. on digital signal processing proceedings, 
DSP97, santorini, Greece ,1997 

10) J.K. Hammond and P.R. White, “The analysis 
of non-stationary signals using time-frequency 
methods,” journal of sound and vibrations, pp. 
419-447, 1996. 

11) F. Hlawatsch and G.F. Boudreax-Bartels, 
“linear and quadratic time-frequency signal 
representations,” IEEE Signal Processing 
Magazine, Vol. 9, pp. 21-67, April 1992. 

12) L. Cohen, “Time-frequency analysis,” Prentice 
hall PTR, Englewood Cliffs, New Jersy,1995 

13) L. Cohen, “Time-frequency distributions – a 
review,” in proceedings of the IEEE , July 
1989, Vol. 77, No.7, pp. 941-979 

14) C. S. Burrus, R. A. Gopinath, H. Guo, 
“Introduction to Wavelets and Wavelet 
Transforms, a primer” Prentice Hall New 
jersey, 1998. 

 
 

5th WSEAS Int. Conf. on WAVELET ANALYSIS and MULTIRATE SYSTEMS, Sofia, Bulgaria, October 27-29, 2005 (pp31-35)


