
A Symbolic–Numeric Method To Analyse

Nonlinear Differential Equations in Fourier Domain

NICOLAS RATIER, MICKAEL BRUNIAUX
Institut FEMTO–ST, département LPMO, CNRS UMR 6174

Ecole Nationale Supérieure de Mécanique et des Microtechniques
32 avenue de l’Observatoire, 25044 Besançon Cedex

FRANCE

Abstract: - This paper presents a method to express, in symbolic form, any system of algebrico–
differential equations into a nonlinear system of Fourier coefficient of the unknowns. The solution
of the nonlinear equations generated in the last step of the method gives an approximation of the
steady–state solution of the differential equations. Main applications should be found in the domain
of ultra–stable oscillator circuits. The paper explains how to face with the two main difficulties of
this symbolic computation: the processing of the nonlinear components and the control of the large
number of coefficients. The solution proposed is inspired from compiler construction techniques.

Key-Words: - Nonlinear differential equation, Fourier Series, Symbolic–Numeric method.

1 Introduction
The motivation of this work described in this
paper is the interest that circuit designers have
in simulation techniques that could tackle the
problem of finding steady–state solutions for
nonlinear circuit, particularly for ultra–stable
crystal oscillators.

Crystal oscillators use very high–Q res-
onators to achieve very high stability and low
noise. The Q of the best resonators can be as
high as 1000000 leading to a Q of up to 100000 in
well designed oscillators. A Q of 100000 implies
that the time constant of the turn–on transient
for such an oscillator is roughly 100000 cycles
of the oscillation frequency in length. Clearly,
transient simulation of such circuit to steady–
state is very painful; however steady state is re-
quired in order to determine important charac-
teristics, such as the output power, amplitude
and frequency of the oscillator.

The method usually used to simulate this
kind of circuit is the so–called ”harmonic–
balance” method [1]. Roughly, in this numer-
ical method the linear subcircuits are computed
in the frequency domain and the nonlinear sub-
circuits are computed in the time domain. The
name stems from an approach based on current
balancing between the linear and nonlinear sub-
circuits.

Our method replaces, by symbolic computa-
tion, the nonlinear differential equation system
that describes the whole circuit by a system of

nonlinear equations of Fourier coefficient whose
solution is an approximation of the steady–state
response of the circuit. The harmonic analy-
sis methods impose the steady–state conditions
by virtue of Fourier expansion of the unknown
functions. Simulation times are, therefore, in-
dependent on the length of transients. The ul-
timate aim is to perform a real time simulation
of ultra–stable oscillator circuits.

This method is faced with two major diffi-
culties: The processing of the nonlinear compo-
nents and the control of a very large number of
coefficients. This paper proposed a solution in-
spired from compiler construction technique to
solve these two problems.

2 Principle of the symbolic

harmonic method
P (T0) denotes the set of all periodic functions
of bounded variation with period T0. Given a
differential equation system of the form (Eq. 1)
where u ∈ P (T0) is the stimulus waveform, x
is the unknowns waveform to be found and f is
continuous and real.

f(x, x′, u) = 0 (1)

If we assume that the solution x exists, is
real, and belongs to P (T0), x can be written as

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp208-213)

a Fourier series (Eq. 2) where ω0 = 2π/T0.

x(t) = X0+

∞∑

k=1

Xk cos(kω0t)+

∞∑

k=1

X−k sin(kω0t)

(2)
Substitute the assumed solution and its

derivative into f . Note that x ∈ P (T0) im-
plies x′

∈ P (T0), and since u ∈ P (T0) as well,
f(x, x′, u) ∈ P (T0). Write the resulting equa-
tion as Fourier series (Eq. 3).

f(x, x′, u) = F0+
∞∑

k=1

Fk cos(kω0t)+
∞∑

k=1

F−k sin(kω0t)

(3)

Using the orthogonality of sinusoids at dif-
ferent frequencies, rewrite (Eq. 3) as a system
of nonlinear equation (Eq. 4), one for each har-
monic defined by the assumed solution.

F (X, k) = 0 for all k ∈ Z (4)

Unfortunately, even by truncating the
Fourier series to N terms, the method described
above is difficult to apply by symbolic compu-
tation. A direct and naive application of the
method to build the nonlinear system leads to
an exponential growth of the number of terms.
Moreover, the second problem is the manage-
ment of the nonlinear terms of the differential
equation.

3 Build the ODE tree
The technique and data structure for trans-
lating the ODE1 into nonlinear equations of
Fourier coefficients is inspired by compiler tech-
niques [2]. The ODE is seen as a language writ-
ten in an human–readable grammar (the ”con-
crete syntax”). Our translation program reads
the ODE and computes a structured representa-
tion of it (into an ”abstract syntax”). This rep-
resentation is then processed to produce com-
pact equations of Fourier coefficients. The ab-
stract syntax makes a clean interface between
the parser and the later phases of the trans-
lation. The abstract syntax tree conveys the
phrase structure of the source program, with all
parsing issues resolved but without any seman-
tic interpretation.

The concrete grammar of ODE is written as
syntax diagrams for clearness in Fig. 6. The
conversion of the diagrams into left–recursive

1Ordinary Differential Equation

Backus–Naur–Form (BNF) is straightforward.
The rules for reading syntax diagrams are the
following: Every diagram represents one lan-
guage element, non–terminals are represented
by rectangular boxes, and terminals by oval
boxes, the run through the diagram starts at
the leftmost point.

The UNKNOWN terminals are elements of the
unknown vector x(t). The FUNCTION terminals
are either constants or functions already in har-
monic form, like the stimulus waveform u(t).
The grammar accepts only the transcendental
function EXP, COS and SIN. It rejects any other
transcendental function (log, tan, ...), inverse of
a function, and composite function. To fit all
ODE to the given grammar (Fig. 6), one pro-
ceeds by introducing an additional unknown to
the equation system. This transforms the ini-
tial differential equation system into an algebro–
differential system. This handling is trivial as
shown in the following example.

· · · + tanV1 + · · · + arccos V2 + · · · = 0 (5)

becomes

· · · + H1 + · · · + H2 + · · · = 0 (6)

H1 cos V1 = sinV1 (7)

cos H2 = V2 (8)

The latter equations are now recognized by
the grammar. The same method can be directly
applied to the inverse of a function and to the
composite functions.

The abstract syntax of the ODE is written
below in OCaml–like way [3]. This representa-
tion has many advantages. It allows one to sepa-
rate the syntactic description of a language with
its semantic analysis and transformation. More-
over, abstract syntax is usually simpler than
concrete syntax. Since abstract syntax has a
unique tree structure, it is not necessary to re-
flect binding strength using different types, as
we did with different nonterminals to avoid am-
biguity.

type odeTree =

SUM of odeTree * odeTree

| PROD of odeTree * odeTree

| DIFF of odeTree

| EXP of odeTree

| COS of odeTree

| SIN of odeTree

| UNK of unknown

| FCT of function

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp208-213)

The mapping of concrete grammar to ab-
stract syntax is illustrated for Eq. (9).

−a sin(ωt) + G1V1(t) + C1

dV1

dt
(t) = 0 (9)

The tree of Fig. 1 which decorates the ”ab-
stract syntax” represents Eq. (9). The abstract
syntax shows that the tree is binary so that each
node involves only one algebraic operation (SUM,
PROD, DIFF, ...). Moreover the leafs are either
unknown functions (V1(t)) or function already
in series form (−a sinωt, C1 and G1 constant).

−a sin [ωt]

FCT

G1

FCT

V1 [t]

UNK

PROD

C1

FCT

V1 [t]

UNK

DIFF

PROD

SUM

SUM

Fig. 1: Binary tree of Eq. 9

4 Parse the ODE tree
The problem is to express each equation in har-
monic form, with the constraint that the coeffi-
cient number generated during this phase does
not increase exponentially. The abstract syntax
processing consists of progressively reducing the
tree in harmonic form from the bottom to the
top: at each node new coefficients expressed in
function of the previous ones will be generated.
At the final step, it will remain only a Fourier
series with manageable coefficients.

• UNK(V1(t)) is replaced by its Fourier series
limited to N terms, i.e. it returns:

A00V1
+ A01V1 cos wt + B01V1 sin wt
+ A02V1 cos 2wt + B02V1 sin 2wt
+ A03V1 cos 3wt + B03V1 sin 3wt

• FCT(G1) is already under the righ form, so
it is replaced by itself.

• SUM(S1,S2) with

S1 = A00S1 + A01S1 cos wt

+ B01S1 sin wt + ...
S2 = A00S2 + A01S2 cos wt

+ B01S2 sin wt + ...

is reduced by generating new coefficients

TT1 = A00S1 + A00S2
TT2 = A01S1 + A01S2
TT3 = B01S1 + B01S2
... = ...

and return

TT1 + TT2 cos wt + TT3 sin wt + ...

• PROD(S1,S2), DIFF(S1) are reduced like
SUM(S1,S2), however, the equations asso-
ciated with the generated coefficients are a
little bit more complex than the straight-
forward case of SUM(S1,S2).

5 Build the nonlinear function

trees
The problem is to represent the exponential,
cosinus and sinus of a Fourier series into the
form of a Fourier expansion. Moreover, the co-
efficients of the obtained Fourier series must be
easy to handle.

The solution of the problem is quite similar
to the previous one. It is based on constructing
a binary tree and then generating new coeffi-
cients in function of the previous ones during
the tree parsing. In this problem, the concrete
grammar to analyse is written in Fig. 2.

NonLinearExp

EXP
�
�

�
�

�COS
�
�

�

�SIN
�
�

�

�

(
�
�

�
TermSeq)

�
�

�

TermSeq

Term�

� +
�
�

�

�

Term

TT
�
�

�
�

�TT*cos(omega*n*t)
�
�

�

�TT*sin(omega*n*t)
�
�

�

�

Fig. 2: Concrete grammar of nonlinear func-
tions

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp208-213)

The construction of the tree is based on the
addition formulae. Of course, each transcenden-
tal function EXP, COS, SIN will have a different
associated tree. The reduction of the tree will
be possible thanks to their associated Bessel se-
ries.

A recursive application of the addition for-
mula for the exponent function (Eq. 10) allows
one to define an abstract grammar that repre-
sents a binary tree of EXP.

exp(a+b+c+· · ·) = exp(a) exp(b+c+· · ·) (10)

For example, the expression

EXP(A00S1 + A01S1 COS wt + B01S1 SIN wt
+ A02S1 COS 2wt + B02S1 SIN 2wt)

is represented by the following binary tree
(Fig. 3)

exp U1

expU2

expU3

exp U4 exp U5

PROD

PROD

PROD

PROD

Fig. 3: Binary tree of exponential

with

U1 = A00S1

U2 = A01S1 cos(wt)

U3 = B01S1 sin(wt)

U4 = A02S1 cos(2wt)

U5 = B02S1 sin(2wt)

The method used for EXP can be applied to
COS and SIN, it is just a little bit more com-
plicated because the trees for COS and SIN are
mutually recursive.

A recursive application of the addition for-
mula for cos (resp. sin), see Eq. (11) and
Eq. (12), allows to define an abstract grammar
that represents a binary tree of COS (resp. SIN).
Note that the construction of the tree for COS

involves the tree of SIN, and conversely.

cos(a + b + c + · · ·) = (11)

cos(a) cos(b + c + · · ·) − sin(a) sin(b + c + · · ·)

sin(a + b + c + · · ·) = (12)

sin(a) cos(b + c + · · ·) + cos(a) sin(b + c + · · ·)

For example

COS(A00S1 + A01S1 cos wt + B01S1 sin wt)

is represented by the binary tree shown in Fig. 4,
with

U1 = A00S1

U2 = A01S1 cos(wt)

U3 = B01S1 sin(wt)

Similary,

SIN(A00S1 + A01S1 cos wt + B01S1 sin wt)

is represented by the binary tree shown in Fig. 5,
with

U1 = A00S1

U2 = A01S1 cos(wt)

U3 = B01S1 sin(wt)

6 Parse the nonlinear function

trees
The reduction of the nodes (PROD, PLUS, MINUS)
have been previously explained. The reduction
of the leafs is based on the associated Bessel se-
ries of each transcendental function (exponen-
tial, cosinus, sinus). Indeed, it is well known
that exp(z cos θ) and exp(z sin θ), respectively
cos(·) and sin(·), can be expressed in harmonic
form [4].

These harmonic expansions are recalled in
Eq. 13 to Eq. 18 for completeness, where Ik(z)
are the Bessel functions of the second kind and
of integer order, and Jk(z) are the Bessel func-
tions of first kind and of integer order. The leaf
EXP(A00S1), respectively COS(.) and SIN(.),
is already in the right form.

exp(z cos θ) = I0(z)

+2

∞∑

k=1

Ik(z) cos(kθ) (13)

exp(z sin θ) = I0(z)

+2

∞∑

k=1

(−)kI2k(z) cos(2kθ)

+2

∞∑

k=1

(−)kI2k+1(z) sin((2k + 1)θ) (14)

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp208-213)

cosU1

cosU2 cosU3

PROD

sin U2 sin U3

PROD

MINUS

PROD

sinU1

sinU2 cosU3

PROD

cosU2 sin U3

PROD

PLUS

PROD

MINUS

Fig. 4: Binary tree of cosinus

sin U1

cosU2 cosU3

PROD

sinU2 sinU3

PROD

MINUS

PROD

cosU1

sinU2 cosU3

PROD

cosU2 sin U3

PROD

PLUS

PROD

PLUS

Fig. 5: Binary tree of sinus

cos(z cos θ) = J0(z)

+2

∞∑

k=1

(−)kJ2k(z) cos(2kθ) (15)

cos(z sin θ) = J0(z)

+2

∞∑

k=1

J2k(z) cos(2kθ) (16)

sin(z cos θ) = J0(z)

+2

∞∑

k=1

(−)kJ2k+1(z) cos((2k + 1)θ) (17)

sin(z sin θ) = J0(z)

+2

∞∑

k=1

J2k+1(z) sin((2k + 1)θ) (18)

7 Computation cost
In this section, we compare the efficiency of our
method in terms of the number of arithmetic op-
erations. Table 1 indicates the number of neces-
sary additions and multiplications to transform
a given nonlinear function in a series form. The
so–called direct method is a straigthforward ap-

plication of the well–known method recalled in
section 2. The third column (proposed method)
is relative to the symbolic method described in
this paper.

Direct Proposed

Nb + Nb ∗ Nb + Nb ∗

V (t)2 25 46 25 46

V (t)3 98 314 105 209

V (t)4 277 1129 243 504

V (t)5 647 3269 453 949

exp(V (t)) 935 6594 427 609

Table 1: Computation cost

It should be pointed out that our method is
not a simple calculation refinement that one can
do without. As an example, the present method
is necessary in order to treat any ODE involving
an exponential function of the unknown. This is
very common in electronics where semiconduc-
tor devices are modelled by an equation of the
form exp(qV (t)/kT) [5].

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp208-213)

8 Conclusion
It has been demonstrated how to replace, by
symbolic computation, a nonlinear differential
equation system by a system of nonlinear equa-
tions of Fourier coefficients whose solution is an
approximation of the steady–state solution of
the differential equation.

A solution based on abstract grammar and
tree parsing to manage the large number of co-
efficients inherent to symbolic computation has
been proposed. At the opposite of all other
harmonic methods, the linear and the nonlinear
parts of the differential equation are processed
in an uniform way in the Fourier domain.

The numerical simulation times of the equa-
tions generated in the last step of this method
is independent on the length of transients, be-
cause the symbolic harmonic method imposes
the steady–state conditions by virtue of Fourier
expansion of the unknowns.

No mention has been made about how to
solve the system of nonlinear equations gener-
ated in the last step of the symbolic harmonic
method. The resulting system is highly non-
linear and sparse. Efforts are currently made
to develop specific and efficient numerical algo-
rithms in this direction.

References:

[1] Kenneth S. Kundert, Jacob K. White and
Alberto Sangiovanni–Vincentelli, Steady–
State Methods for Simulating Analog
and Microwave Circuits, Kluwer Academic
Publishers, 2003

[2] Andrew W. Appel, Modern Compiler Im-
plementation in ML, Cambridge University
Press, 1998

[3] Emmanuel Chailloux and Pascal Manoury
and Bruno Pagano., Developing Applica-
tions With Objective Caml, Online version
(04/2005):
http://caml.inria.fr/pub/docs/oreilly-book/

[4] Milton Abramowitz and Irene A. Stegun,
Handbook of Mathematical Functions, Dover
Publications, Inc., 1972

[5] G. Massobrio and P. Antognetti, Semiconduc-
tor Device Modeling with SPICE, MacGraw-
Hill, Inc, second edition, 1993.

EquationSystem

Equation�

�

�

Equation

Level01

Level01

�

� +
�
�

�

� -
�
�

�

�

Level02�

� +
�
�

�
�

� -
�
�

�

�

�

Level02

Level03�

� *
�
�

�

�

Level03

Primary �

� ^
�
�

�
UNSIGNED INTEGER

�
�

�

�**
�
�

�
UNSIGNED INTEGER

�
�

�

�

Primary

UNSIGNED INTEGER
�
�

�
�

�UNSIGNED REAL
�
�

�

�FUNCTION
�
�

�

�UNKNOWN
�
�

�

�diff
�
�

�
(

�
�

�
UNKNOWN

�
�

�
)

�
�

�

� (
�
�

�
Level01)

�
�

�

�Operator (
�
�

�
Level01)

�
�

�

�

Operator

exp
�
�

�
�

�cos
�
�

�

�sin
�
�

�

�

Fig. 6: Concrete grammar of ODE

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp208-213)

