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Abstract: – The pulsating character of the zirconium oxyhydrate gel properties is determined by the 
conformational reorganization of the matrix. The conformational instability results in the polarization change of 
the electrical double layers of gel particles, which manifests itself in the periodic current splashes.  
 Zirconium oxyhydrate gels put into the magnetic field are characterized by the great current splash, 
which can probably be explained by the polymerizational synchronization of the mesophaselike matrix 
fragments. 
 The mathematical model describing the linear movement of gel fragments into the electrochemical cell 
and gel fragment turning is given.  
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1. Introduction 
In our earlier works [1-2] the appearance of the 
pulsating current into the elongated oxyhydrate 
gel system was shown. It was proved [3] that 
the reason for the pulsating current appearance 
is the self-organizing of gel with time, to be 
more exact, the reasons for the pulsating current 
appearance are the characteristic features of the 
gel fragment polarization potential, the 
polarization potential collapse and the splash of 
ions into the Van der Waals forces field. 

The influence of the magnetic field on 
liquid crystals is also widely known [4-6] (the 
effect of the liquid crystal molecular orientation 
in the force field and the flexi-effect for the 
spiral-shaped molecules).  

Heavy metals oxyhydrate gels are 
mesophaselike that is why it is interesting to 
consider the influence of the magnetic field on 
the systems under study. Moreover, it is 
interesting to study the influence of the 
magnetic field on the polarization current 
character (gel self-organization), as it will 
contribute to the better understanding of the 
nature of polarization. It will also help to follow 
up the changes in gel structuring under the 
influence of constant force field on a particular 

time interval, which is of particular interest as 
zirconium oxyhydrate gels are evolutionary 
systems that are changing with time. 
 
2. Experimental 

The zirconium oxyhydrate gels were 
synthesized from the zirconium oxychloride 
salts by adding the solution of sodium hydrate 
(or ammonia) under pH=9.25; where the 
quantity of zirconium added is n = 0,00094 mol 
into the system.  

The device for measuring the pulsating 
polarizing current was made of the hollow-type 
tube at the each end of which the round 
platinum electrodes (R=0.4cm) were mounted.  
The electrode contacts were connected to the 
recording device. The fresh gel was put into the 
hollow-type tube with the distance between the 
electrodes equal to 7 cm and the output 
resistance of the system equal to 0, which meant 
that the cell filled with gel shorted. The recording 
device measured the electric current appearing in 
the system with the sample frequency equal to 5 
times per second. The experiment lasted for 6 
hours. 

The tube with the oxyhydrate gel was 
put into the system of constant magnets (where 
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field gradient of the A magnet system was equal 
to НА = 900 Oe, field gradient of the B magnet 
system was equal to В - НВ = 600 Oe). After 
that the tube was mounted on the mechanical 
mixer (to prevent the demixing of gel system) 
and put into the thermostate. (T=303K). 
 
3. Results and discussion 

In the experiment the distinct from each 
other curves of the current splash of the 
zirconium oxyhydrate gel system with time 
were obtained. (Fig.1( a, b, c)). 
 

 
a) 

 
b) 
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c) 

Fig. 1(a,b,c). Polarization current change of 
the zirconium oxyhydrate gels synthesized in 
three parallels. 
a) the gels were studied in the magnetic field 
with the intensity equal to 900 Oe, b) the gels 
were studied in magnetic field with the intensity 
equal to 600 Oe, с) the gels were studied with 
no magnetic field; the sample was synthesized 
under pH=9.25; the length of the tube was 
equal to 7 cm., the quantity of the zirconium 
oxyhydrate gel in the tube was n=0.00094 mol. 
 

The hyperbolical increase of the 
polarizing current has been noted for the 
samples put into the magnetic field of the 
highest intensity. The samples of the zirconium 
oxyhydrate gel, put into the magnetic field of 
the lowest intensity, have the same hyperbolical 
increase of the polarizing current, but after 
achieving the maximum value the polarizing 
current starts to decrease exponentially. This is 
accompanied by the change of the current 
direction, i.e. the charge exchange of the 

electrodes is observed (Fig.1b). The effect of 
the charge exchange of the zirconium 
oxyhydrate gel, which was not put into the 
magnetic field, is expressed much stronger than 
in the previous two cases (Fig.1c).   

To evaluate the quantity of the current 
splash of the zirconium oxyhydrate gel, the 
value I∆ microА in absolute magnitude (which 
is between the maximum and minimum values 
of the current splash given in Table 1) was 
calculated. 
 
Table 1. The difference of the maximum and 
minimum values of the current splash in 
absolute magnitude.  

Н, Oe ∆ I, µA 
0 1.18 0.57 0.35 

600 0.49 1.84 0.99 
900 13.46 3.21 6.94 

H – Intensity of the magnetic field 
 
It is clearly seen from the table that the 

range of the zirconium oxyhydrate gel current 
splashes broadens when the intensity of the 
magnetic field increases. It may be explained by 
the orientation effect of the mesophaselike gel 
fragments under magnetic field. As a result of 
the orientation effect the splash of the particles 
is one-directional. Meanwhile the elongated 
synchronized dipoles of the gel fragments, 
having high electrical double layers  
polarization, appear. The flexi-magnet ordering 
effect occurs less in the second case. Elongated 
current splashes are given in Fig.2. 

 

 
Fig. 2. Part of the experimental curve with 

current splashes 
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4. Physical explanation  
Let’s try to analytically describe the 

phenomenon of current splashes and consider 
the following task: let us have some gel in the 
colloid state and let this gel be placed into the 
thin flat tube.  At the each end of the tube there 
is a round platinum electrode with the constant 
voltage difference between them. The chain is 
completed. Then, the charge fluctuation 
together with the gel particle movements causes 
the potential difference. The magnetic field self-
constantly influences on gel making the charged 
particles move. The gel is considered to be 
some kind of sorbing capillary membrane.  

Correspondingly, according to 
Fredericksburg D.A., the flows of charged 
particles +I   and −I   in the absence of 
temperature gradient and chemical potentials 
will be defined by the relation: 

11 12+ = ϕ+I L grad L grad P  
11 12− = ϕ+I L grad L grad P  

where ϕ  is the current potential, P  is the 
pressure, 11L is the conductivity coefficient for 
the flow of positively charged particles, 12L  is 
the value of the electro-somatic flow of the 
positively charged particles, 11L and 12L  are the 
coefficients for the negatively charged particles 
correspondingly.  
 Let 11 11− ≠L L  and 12 12− ≠L L . It can be 
explained by the fact that positively and 
negatively charged particles are presented by 
different substances. These substances interact 
with the gel media differently. Thus, charged 
particles undergo different attraction of the Van 
der Waals forces in the gel media and have 
different mobility in relation to the gel media. 
 Therefore, +I  is not equal to −I . This 
fact will cause the charge accumulation on the 
membranes. In our earlier works we analyzed 
these effects [7].  

Let us consider that 11 11−λ = −L L  and 
12 12−ζ = −L L .  

The formula for the charged particle 
flows may be written as: 

11 12

11 12( ) ( )
+

−

= ϕ+
= − −λ ϕ− − ξ

I L grad L grad P
I L grad L grad P

 (1) 

Now let us write the continuity equation 
for the positively and negatively charged ions. 

+
+ +

−
− −

∂
+ = ∆

∂
∂

+ = ∆
∂

n divj D n
t

n divj D n
t

 (2) 

where +j  and −j  are  the current densities, 
∆D n - is the diffusion, D is the diffusion 

coefficient, ∆  is the Laplace operator. It should 
be noted that j  and I  have different 
dimensions. That’s why we divide +I  and −I  
into the sectional area, which is considered to 
be constant. From (1) we get the relations: 

11 12

11 12

j l grad l grad P

j l grad l grad P grad grad P
+

−

= + ϕ+

= − ϕ− + Λ ϕ+ ξ
   (3), 

 
where all the coefficients are given in relation 
to the sectional area. 

After that we put the expressions for the 
current densities into the continuity equation (2) 
and get: 
 

11 12

11 12( ) ( )

+
+

−
−

∂⎧ + ∆ϕ+ ∆ = ∆⎪⎪ ∂
⎨∂⎪ − −Λ ∆ϕ− − ξ ∆ = ∆
⎪ ∂⎩

n l l P D n
t

n l l P D n
t

               (4). 

 
It should be noted that the task for the potential 
has the form: 
 

1 20 1

4 ( )
| , |

+ −

Γ Γ

∆ϕ = π −⎧⎪
⎨ϕ = ϕ ϕ = ϕ⎪⎩

n n
                                         (5), 

 
where 1Γ  is the left electrode where the EMF of 
gel  maintains the constant electrostatic 
potential 0ϕ , 2Γ  is the right electrode where the 
EMF of gel maintains the 1ϕ electrostatic 
potential.  

If we neglect the boundary conditions, 
which will be discussed later in the article, and 
combine the systems of equations (4) and (5) 
we will get: 

11 12

11 12

4 ( )

4 ( )( ) ( )

+
+ − +

−
+ − −

∂⎧ + π − + ∆ = ∆⎪⎪ ∂
⎨∂⎪ − π −Λ − − − ξ ∆ = ∆
⎪ ∂⎩

n l n n l P D n
t

n l n n l P D n
t

 

Let us consider, that the ion pressure in 
the liquid is equal to that in the ideal gas, and 
proportional to the ion concentration. Therefore, 
we get  
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( )

( )

11 12 1 2

11 12 1 2

4 ( )

4 ( )( ) ( )

+
+ − + − +

−
+ − + − −

∂⎧ + π − + ∆ α +α = ∆⎪⎪ ∂
⎨∂⎪ − π −Λ − − −ξ ∆ α +α = ∆
⎪ ∂⎩

n l n n l n n D n
t

n l n n l n n D n
t

(6), 

where 1α , 2α  are the proportional coefficients. 
 
5. Formal decision  

The set of equations (6) is not completed 
as it has no initial and boundary conditions and 
the area for the decision to be done is not 
defined.  

We will decide the task in one-
dimensional area (x-coordinate), as the length 
of the dipoles is small (some micrometers) in 
comparison with the tube length (about 10 cm). 
We may consider the area to be one-
dimensional and indefinite. Let us require that 
there are no ions on the infinity different from 
the ion background (as the ion background in 
(6) is not taken into account). So, 0± →n  
where → ±∞x .  The same condition is suggested 
for the coordinate derivative: 

0±∂
→

∂
n
x

where → ±∞x .  

Time period for the decision (6): let the 
time period start at the moment 0=t  and go into 
infinity → +∞t . At the initial moment of time 
we will consider that 0 0|+ = =tn N , а 0 1|− = =tn N , 
where 0N  and 1N  may not correspond due to 
different properties of negatively and positively 
charged gel particles.  

Thus, the task (6) can be written as 
follows: 

( )

( )

11 12 1 2

11 12 1 2

0 0

4 ( )

4 ( )( ) ( )

| , | , | 0, | 0

0, 0 ( ; ), (0; )

t t x x

x x

n l n n l n n D n
t

n l n n l n n D n
t

n N n N n n
n n x t
x x

+
+ − + − +

−
+ − + − −

+ = + − = − + →±∞ − →±∞

+ −

→±∞ →±∞

∂⎧ + π − + ∆ α +α = ∆⎪ ∂⎪
∂⎪ − π −Λ − − −ξ ∆ α +α = ∆⎪ ∂⎨
⎪ = = = =
⎪
∂ ∂⎪ = = ∈ −∞ +∞ ∈ +∞
⎪ ∂ ∂⎩

(7) 

Hereafter, not to make the calculations 
complex, we will take the upper two of the set 
of equations (7). 

It is useful to transfer the expressions for 
the concentrations with different signs to the 
different parts of the equation. 

( )11 12 1 12 2 11

11 12 2 11 1 12

4 4

4 ( ) ( ) 4 ( ) ( )

n l n l D n l n l n
t

n l n l n D n l n l n
t

+
+ + − −

−
− − − + +

∂⎧ + π + α − ∆ = α ∆ + π⎪⎪ ∂
⎨∂⎪ + π −Λ − −ξ α ∆ − ∆ = π −Λ +α −ξ ∆
⎪ ∂⎩

(8) 

 

Let us introduce the designations: 

( )11 12 1 14 [ ]+
+ + +

∂
+ π + α − ∆ ≡

∂
n l n l D n L n
t

, 

12 2 11 24 [ ]− − −α ∆ + π ≡l n l n L n ,  

11 12 2 34 ( ) ( ) [ ]−
− − − −

∂
+ π −Λ − −ξ α ∆ − ∆ ≡

∂
n l n l n D n L n
t

, (9) 

11 1 12 44 ( ) ( ) [ ]+ + +π −Λ +α − ξ ∆ ≡l n l n L n  
  

Then we get the following set of equations: 
1 2

3 4

[ ] [ ]
[ ] [ ]
+ −

− +

=⎧
⎨ =⎩

L n L n
L n L n

 

Let us apply the 1L  operator to both 
parts of the second equation and the 3L  operator 
to both parts of the first equation. We will get 

[ ] [ ] [ ]3 1 3 2 2 3 2 4[ ] [ ] [ ] [ ]+ − − += = =L L n L L n L L n L L n . 
The same type of calculations may be done for 
the density of the negative charges. 

It should be noted that the equation we 
got has the second order in time and the fourth 
order on coordinate.   

Considering the boundary conditions in 
the set of equations (7), we can apply the 
Fourier transformation. 

Then, for the Fourier transform 

( )[ ] ( , )exp
+∞

+ +
−∞

= ≡ ∫F n n n x t ikx dx , we get:  

( )

{ }{ }

2 2
11 12 1 11 12 1

2 2
11 12 2 11 12 2

4 4

4 ( ) ( ) 4

∂ ∂⎧ ⎫⎧ ⎫+ π − α − − π − α =⎨ ⎬⎨ ⎬∂ ∂⎩ ⎭⎩ ⎭

= − π Λ− − ξ− α π + α

l k l D l k l n
t t

l l k l l k n

 (10) 

The solution of the equation will have 
the form: 

{ }
{ }

2 2 2 4
1 3 4 6 5 6 4 7 5 71

2 2 2 4
2 3 4 6 5 6 4 7 5 71

( , ) exp ( )

exp ( )

⎛ ⎞= + − + − + +⎜ ⎟
⎝ ⎠

⎛ ⎞+ − − + − +⎜ ⎟
⎝ ⎠

n k t C t a k a a a a a a a k a a k

C t a k a a a a a a a k a a k

(11) 

where the following designations are used: 
 1 114= πa l , 2 12 1= α −a l D , 3 12 2= αa l , 

4 114 ( )= π Λ −a l , ( )5 12 2= ξ − αa l , 

6 114= πa l , 7 12 2= αa l .  
The coefficients C1 and 2C   should be 

determined from the initial conditions. 
It should be noted that the inverse 

Fourier transformation is impossible to do 
analytically and it is necessary to make the 
numerical calculations.   

 

4th WSEAS Int. Conf. on NON-LINEAR ANALYSIS, NON-LINEAR SYSTEMS and CHAOS, Sofia, Bulgaria, October 27-29, 2005 (pp77-84)



 
Fig. 3. Inverse Fourier transformation 

for the set of equations (7) 

1C  is equal to 2exp( )−k , 02 =C ; 3 1/130=a , 
5 6 4 7 0− =a a a a , radical expression in the 

exponent (11) is equal to zero;  1 is the second 
moment of time (t),  2 is the forth moment of 
time (t);  3 is the sixth  moment of time (t); 4 is 
the eighth moment of time (t); dimensionless 
time (t); x  is space coordinate; +n is the 
concentration of the positively charged ions; 
negative values of the concentration are 
determined by the rough regularization of the 
inverse Fourier transformation. 
 
6. Accurate solution  

Let +N be the initial concentration of the 
positively charged density, and −N  be the 
initial concentration of the negatively charged 
density. The solution for the +n is: 

{ }
{ }

2 2 2 4
1 3 4 6 5 6 4 7 5 71

2 2 2 4
2 3 4 6 5 6 4 7 5 71

exp ( )

exp ( )

+
⎛ ⎞= + − + − + +⎜ ⎟
⎝ ⎠

⎛ ⎞+ − − + − +⎜ ⎟
⎝ ⎠

n C t a k a a a a a a a k a a k

C t a k a a a a a a a k a a k

(12) 

For the sake of convenience we 
introduce the values 1λ  and 2λ , so that 

1 1 2 2exp( ) exp( )+ = λ + λn C t C t .  
Then, we get the following relationship for the 
negatively charged ion concentration: 

2 2 2
11 12 2 1 11 12 1 1 2 11 12 1 2(4 ) ( 4 ( )) ( 4 ( ))−π − α = λ + π − α − + λ + π − α −l k l n l k l D C l k l D C

  
After that, we get the relationships for the 
constants 1C and 2C : 

2 2
11 12 2 2 11 12 1

1
1 2

(4 ) ( 4 ( ))− +π − α − λ + π − α −
=

λ − λ
N l k l N l k l DC , 

2 2
1 11 12 1 11 12 1

2
1 2

( 4 ( )) (4 )+ −λ + π − α − − π − α
=

λ −λ
N l k l D N l k lC . 

Then, we get the relationships for the density of 
the negatively and positively charged particles: 

1 21 2
λ λ

+ = +t tn C e C e , 
1 2

2 2
1 11 12 1 2 11 12 1

1 22 2
11 12 2 11 12 2

( 4 ( )) ( 4 ( ))

(4 ) (4 )
λ λ

−
λ + π − α − λ + π − α −

= +
π − α π − α

t tl k l D l k l Dn C e C e
l k l l k l

 
As we are interested in the charge difference 

+ −δ = −n n n  we subtract −n from +n .  
As a result we get 

1 2
2 2

1 2
1 22 2

11 12 2 11 12 2

( ) ( )

(4 ) (4 )
λ λλ + λ +

δ = +
π − α π − α

t tk D k Dn C e C e
l k l l k l

. 
Let’s consider that 0=+N  and 1N− = + .  
Then we get the relationship  

2
1 2

2 2
1 2
1 2 1 2

( ) ( )λ λ −⎛ ⎞λ + λ +⎜ ⎟δ = +
⎜ ⎟λ −λ λ −λ⎝ ⎠

t t kk D k Dn e e e . (13) 

The solution of the equation is given in 
Figure 4. 

 

 
Fig. 4. Decision of equation (13), 

x  is the space coordinate; δn is the coordinate 
calculated from the equation (13), 
(dimensionless coordinates); 1 is the moment of 
time in dimensionless units 0;  2 is the moment 
of time equal to 0.5;  3 is the moment of time 1;  
4 is the moment of time equal to1.5. 
 
7. Distributed membrane 

Let us consider that the membrane is a 
distributed one, i.e. the charge adsorption will 
take place in many places. It means that the 
current magnitudes +I and _I  are given only for 
the thin layer xδ . Therefore, these values 
should be considered not as current magnitudes 
but as current steps Iδ  in the current direction. 
Consequently, taking into account the 
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continuity equations we get the analogue 
system of equations (4-5): 

( )

( )

11 12 1 2

11 12 1 2

2

2

( ) ( )

4 ( )

+
+ − +

−
+ − −

+ −

⎧∂ ∂ ∂⎪ + ϕ+ α +α = ∆
∂ ∂ ∂⎪

⎪∂ ∂ ∂⎪ − −Λ ϕ+ −ξ α +α = ∆⎨ ∂ ∂ ∂⎪
⎪∂ ϕ⎪ = π −
⎪∂⎩

n l l n n D n
t x x

n l l n n D n
t x x

n n
x

(14) 

We consider the set of equations (8) in 
the same area as the set of equations (6).  

Considering the set of equations (8) we 
take into account the boundary conditions that 
are analogous to those in (6). It should be noted 
that these boundary conditions enable us to 
make the x-coordinate Fourier transformation in 
infinite limits. 

When the x-coordinate Fourier 
transformation is done we get the relationships: 

( )

( )

2
11 12 1 2

2
11 12 1 2

2

[ ] [ ] [ ] [ ] [ ]

[ ] ( ) [ ] ( ) [ ] [ ] [ ]

[ ] 4 ( [ ] [ ])

+
+ − +

−
+ − −

+ −

∂⎧ + ϕ + α +α =−⎪ ∂⎪
∂⎪ − −Λ ϕ + −ξ α +α =−⎨
∂⎪

⎪− ϕ = π −⎪⎩

F n ikl F ikl F n F n k DF n
t

F n ik l F ik l F n F n k DF n
t

k F F n F n

(15) 

For simplicity let us consider the case, 
when 0=Λ  and 0=ξ . Then we neglect the 
boundary conditions. After that we add to the 
given above set of equations its Fourier 
transformation in order to account for the 
influence of the external field. 

( )

( )

2
11 11 0 12 1 2

2
11 11 0 12 1 2

2

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] 4 ( [ ] [ ])

+
+ − +

−
+ − −

+ −

∂⎧ + ϕ + + α +α =−⎪ ∂⎪
∂⎪ − ϕ − + α +α =−⎨
∂⎪

⎪− ϕ = π −⎪⎩

F n ikl F l F E ikl F n F n k DF n
t

F n ikl F l F E ikl F n F n k DF n
t

k F F n F n

(16) 

Let us consider that at the initial moment 
of time the positive and negative ion 
concentrations are equal to zero. 

To solve the given set of equations we 
add the first two sets of equations. As a result 
we get the following relationship: 

2
12 1 2

( ) ( ) ( )+ −
+ − + −

∂ +
+ α +α = − +

∂
n n ikl n n k D n n

t
.  

If the coefficients 1α and 2α are considered to 
differ not much from each other, the solution 
for the equation is zero, i.e. 0~~ =+ +− nn .  

Then,   
2

11 11 0

2

[ ] [ ] [ ] [ ]

[ ] 8 [ ]

+
+

+

∂⎧ + ϕ + = −⎪ ∂⎨
⎪− ϕ = π⎩

F n ikl F l F E k DF n
t

k F F n
 

or 
211

11 0
[ ] [ ] [ ] [ ]+

+ +
∂

− + = −
∂

F n il F n l F E k DF n
t k

        (17) 

Making calculations in the common coordinates 
we get:  

2
0 2

( , ) ( , )( , ) ( , )+ +
+

∂ ∂
+ + =

∂ ∂
∫

n x t n x tA n x t dx E x t D
t x

.  

Now we solve the equation concerning the 
derivative with time and get the integral 
equation that has the form: 

2
0

0

( )exp ( , )
4 ( )4 ( )

+∞

+ +
−∞

⎛ ⎞τ −⎜ ⎟= − − − τ
⎜ ⎟− τπ − τ ⎝ ⎠

∫ ∫ ∫
t d x sn E t A ds n s ds

D tD t
(18) 

Let’s make some numerical approximations for 
the solution of this equation: 
The zero solution has the form: (0)

0+ = −n E t   
The first solution has the form: 

(1)
0 0+ = − +n E t AE tx .  

It should be noted that the first 
approximation is odd. In view of the 
relationship 0− ++ =n n , the charge in the 
capillary will linearly increase with time 
correspondingly increasing the potential of the 
capillary. The magnetic field of the potential 
will be oriented against the external field, which 
will make the current position of the capillary 
unstable and it will strive to turn against the 
magnetic field. Considering the capillary turn 
occurs in seconds, we can suppose that the 
magnetic field depends on time in discrete 
steps: 0 0( , ) (sin( ))= ωE x t E sign t , where the value 
ωwill be determined by the unstable 
equilibrium state of the capillary. 

Correspondingly, the densities will 
change: under zero-order approximation the 
density will have the form 

0 0 arcsin(sin( )) /= ω ωE E t , under first 
approximation the density will have the form -

(1)
0 0( )arcsin(sin( )) /+ = − + ω ωn E AE x t . 

How will the frequency of oscillation be 
determined then?  Roughly, it will be 
determined from the relationship: 

2
02 sinϕ = − ϕI E Tl  , where I is the inertia moment 

of the gel capillary, 0E is the electric field 
created in the capillary, T  it the period time of 
the turn, l  is the part of the asymmetric 
capillary which acts as the arm of force. 
Consequently, the frequency of oscillation will 
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be determined by:
2

2 02
Ω =

E Tl
I

, or taking into 

account the dependence of period on the 

frequency of oscillation: 
2

3 04π
Ω =

E l
I

. The non-

linear equation should be made to determine the 
exact values.   

 
Fig. 5. Change of the dipole turn angle with 

time 
2
02 sinϕ = − ϕI E tl (the angle is calculated in pi 

radian units), t is the dimensionless time. The 
decision is based on the consumption that the 
deviation from the normal position at the initial 
moment of time is equal to 0.01radian, and the 
velocity is equal to zero. 

 
The drift of the dipole in the external 

field will take place in the following manner: 
the “inverted” dipole will for some time drift in 
the field till the accumulated charge of its 
polarized part “resolves”. After that the 
backward movement may start if the 
oxyhydrate dipole and the polymer membrane 
do not become polymer-linked.   

8. Conclusion 
The pulsating character of the zirconium 

oxyhydrate gel properties is determined by the 
conformational reorganization of the matrix. 
The conformational instability results in the 
polarization change of the electrical double 

layers of gel particles, which manifests itself in 
the periodic current splashes.  
 Zirconium oxyhydrate gels put into the 
magnetic field are characterized by the great 
current splash, which can probably be explained 
by the polymerizational synchronization of the 
mesophaselike matrix fragments. 
 The mathematical model describing the 
linear movement of gel fragments into the 
electrochemical cell and their turning is given.  
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