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Abstract: -The health of the fetus is of major concern to both obstetricians and expectant mothers. A 
non-invasive fetal electrocardiogram (FECG) system can monitor fetal cardiac condition during pregnancy. 
However, the FECG signal is often very weak or drowned out by the mother’s ECG (MECG) and other noises. 
This study uses a FastICA algorithm to the isolate FECG signal from other noise interference. The results show 
that such mixed signals can be separated by FastICA into MECG, FECG, and noises, thus enabling obstetrician 
to clearly understand the fetal condition through FECG monitoring. 
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1   Introduction 
Fetal electrocardiogram (FECG) signals, such as the 
fetal heart rate, T/QRS amplitude ratio and locomotor 
activities, allow obstetricians to monitor fetal vital 
signs and maturity during pregnancy. With the help 
of FECG, obstetricians can check on fetal growth, 
detect congenital cardiovascular diseases and identify 
any possible factors indicating aplasia. This makes 
FECG an important index in clinical practices. 
However, its signal-noise ratio (SNR) is often very 
low, because the FECG signal is very weak and is 
usually interfered by with the mothers ECG (MECG) 
and other noises. Therefore, reducing the extraneous 
noise in FECG is essential for the correct diagnosis of 
the fetal condition. In this study, we use FastICA to 
separate the FECG from other noises and to improve 
the quality of the FECG signals. 
Independent Component Analysis (ICA) is a 
technique that combines statistics, computational 
simulation and digital signal processing [1],[2]. It can 
reveal the hidden sources that underlie sets of mixed 
signals. In 1986, Herault and Jutten presented a 
recurrent neural network model and a simple 
feedback adaptive algorithm that was able to blindly 
separate mixtures of independent signals [3]. This 
method was further developed by Jutten and Herault 
(1991), Karhunen and Joutsensalo (1994), Cichocki, 
and Unbehauen and Rummert (1994) [4]-[6]. In 
1994, Comon outlined the general framework for 
ICA introduced by Herault and Jutten with greater 
clarity and in more theoretical detail. He also 

developed an objective function based on cumulant in 
statistics [7]. Linsker (1992) proposed an 
unsupervised learning rule based on information 
principles [8]. Its primary purpose was to allow 
maximization of the information shared by the input 
and the output of a neural network. Bell and 
Sejnowski (1995) derived a learning rule which could 
perform a gradient ascent on the information content 
of the network [9]. This is considered a more 
successful method than Comon’s (1994) for 
information maximization [10]. At present, there are 
two main types of ICA: InfomaxICA developed by 
Lee (1998) and FastICA by Hyvärinen (1999) 
[11]-[15]. FastICA was derived from quasi-neural 
network learning rules. It uses a fixed-point iteration 
scheme, faster than the conventional gradient descent 
methods, for ICA. 

This study explains why ICA can be applied to 
FECG. ICA can be used to isolate the original 
independent sources in a set of mixed signals. (For 
instance, a mixed signal could consist of three 
original signals. ICA can help identify each of the 
tree signals independently.) Traditional FECG 
systems often received mixed signals from fetal heart 
beat, mother’s heart beat, and other noises, causing 
difficulty in monitoring fetal health. The use of ICA 
can improve the quality of FECG signals and ensure 
accurate understanding of fetal condition. Other 
means of improving FECG quality have been tested 
in previous studies [18]-[22].However, none of these 
means is as simple and effective as ICA. 
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2   FastICA Theory 
ICA is a new statistical technique that has been 
developed in recent years [1]-[10]. Here we define 
the observed data 1 2( , , )T

mx x x=x K  as random 
variables in a single m  dimension. Like the diverse 
signals recorded by the perceptron, the signals can be 
measured by  
 

=x As ,                                         (1) 
 
where 1 2( , , )T

ns s s=s K  is the latent variable 
(independent component) and A  denotes the mixing 
matrix. Generally speaking, ICA looks for a linear 
transformation like the following: 
 

=y wx ,                                     (2) 
 
where y  denotes the estimated value of the 
independent component s ; w  represents an 
unmixing matrix. The purpose is to make the 

1 2( , , )T
ny y y=y K  between the components as 

independent as possible. In other words, if a 
measured independent function 1 2( , , )nf y y yK  is 
maximized, it will result in 1−=w A . So, 

1 2( , , )T
ny y y=y K , processed by ICA, will be equal 

to the original latent variable, 1 2( , , )T
ns s s=s K  and 

w  is the matrix sought, with the dimensions of 
n m× . The goal of ICA is to find a linear 
transformation w  of the dependent sensor signals x  
that makes the outputs as independent as possible  
 

=u wx ,                                  (3) 
 
where u  is an estimate of the sources. The objective 
is to minimize the statistical dependence between the 
components.  An illustration on ICA is shown in Fig. 
1. 
 

 
Fig. 1 Sketch of independent component analysis. 
 
To identify the correct w , the following function 
approximation is developed based on the largest 
entropy principle: 

 
} { }{ 2( ) [ ( ) ( ) ]J E G E G v∝ −y y ,               (4) 

 
where G denotes a non-quadratic function and v 
stands for a gaussian random variable. Here, 

1 1( ) (1/ ) log coshG y a a y= , with 11 2a< < . The mean 
of v  is zero. The changing factor is the Gaussian 
random variable of 1. G  can be any non-quadratic 
function without restriction, for which the value will 
be zero when G  is a quadratic function. FastICA 
identifies independent components by maximizing 
the negentropy [11-15]. According to Hyvärinen, the 
largest J  values in }{ ( ) ( )TE G Gw x y  of Eq.(4) can 

be attained at certain optima of }{ ( )TE G w x . Under 

the delimitation of }{ 22( ) 1TE = =w x w , the optima 

of }{ ( )TE G w x  will appear in 

}{ ( ) 0TE g β− =x w x w ,                       (5) 

 
Here, we use Newton’s method to solve the above 
equation. If we replace the left end of Eq.(5) with 

( )F w  and the Jacobian matrix with ( )JF w , then 
Eq.(5) becomes the partial differential of w . 
 

}{( ) '( )TJF E g β= −w xx wx I ,                  (6) 

 
Newton’s method looks for the extent of 
modification in w , for each time. The relation is 
presented as follows: 
 

( ) ( )JF F∆ = −w w w ,                        (7) 
 
To determine the extent of the modification in w  for 
each time, we need to calculate the inverse matrix of 

( )JF w . To simplify the calculation, on 
approximation of the first item in Eq.(7) is processed. 
Since the data has been whitening, then 
 

} } } }{{{{ '( ) '( ) '( )T T TE g E E g E g≈ =xx wx xx wx w x I
                     

         (8) 
 
Such an approximation is acceptable. The Jacobian 
matrix in Eq.(6) can now be diagonalized as 
 

}{( ) [ '( )TJF E g β= −w w x I
,                 (9) 

 

A ICA S 
 

Unknown 

X 
≈u s
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It is new fairly simple to identify the inverse matrix. 
After the approximation in Eq.(9), the iteration of 
Newton’s method results in the following form: 
 

}{ }{
                              

    [ '( ) ] /[ '( ) ]T TE g E gβ β

+ = + ∆

= − − −

w w w

w x w x w w x
               

       (10) 
/∗ + +=w w w

. 
This algorithm can be further simplified. If both ends 
of Eq.(10) are multiplied by { '( )}TE gβ − w x , the 
fixed-point iteration scheme is renewed as  
 
     }{ }{'( ) '( )T TE g E g= −w x w x w x w ,                  (11) 

 /∗ ∗=w w w
. 

 
Finally, the condition for convergence requires that 
the old vector w and the new vector +w  be parallel, 
but not necessarily directed at the same point. Since 
w  and +w  are parallel, the convergence will identify 
the independent components, when the inner absolute 
value of both vectors is 1. 
 
3   Results and Discussion 
Figure 1 shows seven ECG signals recorded from the 
bellies of pregnant women for 5 seconds. The first 
trace from the top down shows the mixed MECG and 
FECG signals. The other traces indicate MECG 
signals or noise. The maternal heart beat can be 
observed as 14 beats within 5 seconds, however, the 
fetal heart beat is unobservable. Herein, this 
characterization will be performed via a 
time-frequency representation, which has the 
advantage that it can be easily constrained to yield the 
real distributions, which can be interpreted as the two 
dimensional decomposition of a signal’s energy 
[16],[17]. Figure 3 presents the time-frequency 
analysis of the mixed MECG and FECG signals in 
Figure 2. The horizontal axis shows time progression; 
the vertical axis indicates the frequency domain. The 
color spectrum denotes the signal volumes in dB. In 
Figure 3, the margin between high frequency and low 
frequency is 225 Hz. Low frequency signals require 
higher energy and are therefore presented in red. 
High frequency signals, on the other hand, are in blue 
or green. The changes in the signals are here clearly 
observable. Since both MECG and FECG are below 
225 Hz, that is in the low frequency range, it is not 
possible to separate them with a classical filter. An 
adaptive filter can cancel out the MECG signal, but 
the remaining noise continues to interfere with FECG 

signal. In this study, we use FastICA to identify the 
mixed matrix w and reconstruct the seven ECG 
signals. Figure 4 shows the reconstructed ECG 
signals. The MECG, FECG signals and the noise can 
all be clearly identified. The Fetal hear beat can be 
observed as 22 beats per 5 seconds. Figure 5 
illustrates time-frequency analysis of FECG signals. 
In Figure 5, low frequency signals processed by 
FastICA are shown in red and orange stripes. Since 
MECG has been separated, the time-frequency 
features of FECG can be clearly understood. Figure 6 
presents the time-frequency analysis of the MECG 
signals. Using these procedures, we find that FastICA 
can separate the confused mixed signals, to enable an 
obstetricians to better monitor fetal health. 

FastICA uses Newton’s method, a classical 
numerical analysis that optimizes the mixed matrix 
by the iteration of linear equations. It does not require 
learning rate as a parameter.  This makes FastICA 
much more easily accepted by the users. Moreover, 
FECG requires an algorithm with fast convergence 
speed. Hyvärinen A. compared FastICA and 
stochastic gradient employed in information 
maximization approach, with the best learning rate 
sequence in quasi-neural network. The results 
showed that flops in FastICA is only 10% of 
stochastic gradient. If the learning rate sequence was 
chosen in an trail-and-error manner without 
preliminary processing, the convergence speed of 
fixed point algorithm will be 210  integer times faster 
than the series and stochastic gradient might not lead 
to convergence. Therefore, FastICA is more suitable 
for processing FECG signals. 

We hope this study will lead to a complete 
non-invasive FECG system in the future, recording 
signals from the abdomen of pregnant women. 
However, there are some problems yet to be solved. 
First of all, the fetus can change positions in the 
mother’s uterus. It’s difficult to record the signals at 
the specific site. Secondly, because blocking of 
amniotic fluid, uterus, muscles, fat, and skin of 
mother, FECG signals are very weak. Clear FECG 
signals can be obtained from the mother’s abdomen 
only after 20 weeks of gestation. The improvement in 
signal detection technique is a significant 
contribution to the analysis of FECG signals. The 
high resolution of FECG signals allow better 
evaluation of fetal health. 
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Fig. 2 Seven MECG signals recorded form the bellies 
of pregnant women. 
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Fig. 3 Time-frequency analysis of the mixed MECG 
and FECG signals. 
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Fig. 4 ECG signals processed by the FastICA. 
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Fig. 5 Time-frequency analysis of the FECG signals. 
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Fig. 6 Time-frequency analysis of the MECG signals. 
 
4   Conclusion 
This study is aimed at using FastICA in improve the 
quality of FECG signals. After being processed by 
FastICA, the fetal heart beat signals can be clearly 
detected. Our study proves that FastICA can be an 
important technique in clinical applications for : (a) 
monitoring the vital signs of the fetus in the mid late 
gestation periods; (b) early diagnosis of multiple 
pregnancies; (c) detecting irregular heart rhythms; (d) 
monitoring fetal heart beat during delivery; (e) 
detecting fetal presentation. Although other 
equipment such as ultrasonographs and 
phonocardiographs may provide some of these 
functions, only the FECG can help monitor fetal 
cardiac charge signals and detect anomalies as early 
as possible. 
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