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Abstract: - In the present paper several statistical and fuzzy methods for identifying anomalies in mechanical 
systems have been proposed. In order to perform the study, more than 1000 tests, each with predefined 
characteristics and goals, have been carried out by means of dynamical test-bed based on a two circular-arc 
cam-follower mechanism. The signals, composed of acceleration of the follower and the applied torque, 
sampled electronically, were grouped into 4 main  families and, for each family, into 4 groups depending to 
their features. All the signals were decomposed, by means of discrete wavelet transform, into 10 orthogonal 
components. The energetic content and many statistical parameters were calculated for each component. 
Afterward, the result of their classification performed by a multivariate statistical analysis (i.e., discriminant 
analysis) was compared to the one obtained by applying a fuzzy algorithm.  
 
Key-Words: - Fuzzy logic, fuzzy classification, robust statistics, complex signal processing, wavelet analysis, 
diagnostics. 
 
1   Introduction 
A cam is mechanical element, which is used to 
transmit a desired motion to another mechanical 
element by direct contact. Specifically, the purpose 
of the cam is the transmission of power, motion or 
information. Usually, a cam is composed of three 
different parts: a driving element called itself cam, 
a driven element called follower and a fixed frame. 
Cam mechanisms are usually used in most modern 
applications, especially in automatic machines and 
instruments, internal combustion engines and 
control systems. Generally, the design of cam 
profile is based on well note simple regular curves 
such as circles, parabolas cycloids, sinusoidal or 

trapezoidal curves, polynomial functions and 
Fourier series curves.  
In the recent literature, many studies have been 
addressed to circular-arc cams [1]. The motion 
equation of an equivalent system model of an 
automotive valve train was studied [2]. 
On the other side, the Wavelet Transformation 
(WT) represents a time-scale analysis of the 
smoothness of a signal  or, more in general, a time 
series of a curve profile [3]. The Wavelet analysis, 
unlike the Fourier one, is very useful when the goal 
is the analysis and decomposition of a signal 
showing a not constant frequency [4]. Let us 
consider the simple case in which we want to find 
the Fourier expansion of a signal, defined from 0 to 
2, that assumes a linear form from 0 to 1 and it is 
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sinusoidal from 1 to 2. In this case, in order to 
obtain an appraisable approximation of the signal, 
we must evaluate many coefficients of the Fourier 
expansion. 
Qualitatively, the difference between the usual sine 
wave and a wavelet can be described from the 
localization property: the sine wave is localized in 
frequency domain, but not in time domain, while a 
wavelet is localized both in the frequency and time 
domain. Furthermore, the duration of its maximum 
oscillation is relatively small. One can regard a 
wavelet as a shape of wave of limited duration and 
zero moments of a given order. The choice of a 
wavelet and of signal decomposition level depends 
on the shape of signals and on the experience of 
the analyst. 
For its versatility, the wavelet analysis is diffused 
in many fields, such as Acoustics, Electrodynamics 
[5], Finance [6], Medicine and Statistics [7]. 
Furthermore, in order to investigate the anomalies 
in a vibrating system, the methodology of wavelet 
analysis was proposed in [8]. In the present paper, 
we study the acceleration of both the follower and 
torque, sampled by a specific electronic 
instrumentation, in several conditions of 
functioning. 
Consider that the response is also due to the 
smoothness of the cam profile, which is composed 
of subsets of circular arcs as explained, in more 
details, in the following paragraph.  
 
 
2   The two-circular cam profile  
Referring to Fig.1, a cam profile can be composed 
by the following curves. The first two curves are 
the circle Γα, (α ∈ {1, 2}), whose radius and center 
are, respectively, ρα and Cα. The third and the four 
circle, named respectively Γ3 and Γ4, are centered 
on the cam rotation axis O; their radiuses are, 
respectively, r and r + h1. If one assumes a fixed 
frame OXY, three characteristic points can be 
identified: A, which joins Γ2 with Γ3; F, which is 
the point joining Γ1 with Γ2; D which joins Γ1 with  
Γ4. In these points, the relative circles have the 
same tangential vector [9]  

 
Fig.1. A roller follower two circular-arc cam 
 
 
3   Methods and Mathematical 
background 
 
 
3.1 Discrete Wavelet Transform 
Mother wavelets are special functions, whose first 
h moments are zero. Note that, if ψ is a wavelet 
whose all moments are zero, also the function ψik is 
a wavelet, where 

)2(2)( 2/ kxx jj
jk −= − ψψ   (1) 

Wavelets, like sinusoidal functions in Fourier 
analysis, are used for representing signals. In fact, 
consider a wavelet ψ and a function φ (father 
wavelet) such that 

{ } { }{ }0
, , , 0,1, 2,j k jk k Z jϕ ψ ∈ = K

 is a complete 
orthonormal system. By Parseval theorem, for 
every signal s ∈ L2(R), it follows that: 
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In particular, the decomposition of a signal s(t) by 
the Discrete Wavelet Transform (DWT) is 
represented by  detail function  coefficients djk = 
<s,ψik> and by approximating scaling coefficients 

0 0
,j k j ka s ϕ=< > .  
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Observe that djk can be regarded, for any j, as a 
function of k. Consequently, it is constant if the 
signal s(t) is a smooth function, if we consider that 
a wavelet has zero moments. 
Lemma 5.4 in [10] implies the recursive relations: 
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where λ = (–1)k+1h1-k ; {hk, k ∈ Z} are real-valued 
coefficients such that only a finite number is not 
zero and that they satisfy the relations 
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For evaluating the features of the signal, a 
parameter (entropy) was defined [8]. Given a set S: 
= {xi,  I ∈ {1,2,…,n}} and a function  c: xi ∈ S → 
c(xi) ∈ R, the entropy H( c ) of c is defined as 
follows: 
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where 
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M: = max ( ){ }{ }nixc i ,...,2,1, ∈    and 

m: = min ( ){ }{ }nixc i ,...,2,1, ∈ . 
 
The entropy measures the best ratio between the 
maximum dynamic showed by signal and the 
smallest uniformity of signal. Given |S| = n, the 
entropy, as before defined, riches its maximum 
value at ln(n) iff, for any i ∈ S, c(xi) = const. 
Finally H(c) = 0 iff, for any i ∈{1, 2,…,n}, c(xi) = 
S and, for any j∈{1, 2,…,n}-{i}, c(xj) = 0. 
Finally, given a random sample X1, X2,…, Xn, 
denote with X(1), X(2),…, X(n) the corresponding 
ordered statistics. In this case, we define the 
sample median as 
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Furthermore we define the sample median absolute 
deviation as 

 
Mad(X1,…, Xn) = Med(| Xi − Med(X1,…, Xn) |, i ∈ 
{1, 2,…, n}). 
 
On the other side, if X is a random variable, we 
define the population median Med(X) as the value 
such that  
 
Pr (X ≤ Med(X)) ≥  1/2  and Pr (X ≥ Med(X)) ≥ 
1/2. 
 
The median absolute deviation of the population is 
defined as follows 
 
Mad(X) = Med(| X − Med(X)|). 
 
3.2  Multivariate analysis 
Discriminant analysis with a stepwise elimination 
was performed [11]. The variables included into 
the model were the entropic values showed by the 
signal after the wavelet decomposition into 10 
levels. The amount of explained variance was 
calculated by collinearity diagnostics and 
multivariate methods [12]. All the analyses were 
carried out by means of statistical software and 
statistical significance was accepted at pr < 0.05. 
For each type of sample a “Group” was created by 
repeating the experiment. 
The resulting vector (i.e., entropic measurements) 
was normalized to length 1 to compensate for 
arbitrary scaling differences. In order to identify 
the most related variable to the characteristics of 
Group the Spearman correlation coefficients were 
calculated for each measurement and Group. 
Discriminant analysis was carried out on all 
Groups. The Wilks’ lambda method was used for 
selecting the test set to assess the success of the 
discriminant function, and also for choosing the 
discriminant variables [13]. 
The classification functions are appropriate when it 
can be assumed that the populations under study 
have both normal multivariate distribution and 
equal variance-covariance matrices. To test the last 
assumption the Box's Test of Equality of 
Covariance Matrices was performed. 
To explain the identification process more 

precisely, let p be an observed signal and ( )ρ,W  
be a specified representation/metric pair. The 
closest candidate index k* (i.e., the index of the 
representation in the database that is closest to the 
observed representation in the sense of  ρ ) is 
 

( )( )ppkk WWavgk ,,.minarg* ρ=
, 
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where avg is an averaging operator, and  
 

( ) ( ) ( )∞→Η×Η ,0: WWρ  
 
 is a metric. 
To determine if this candidate is indeed the 
signal’s Group a threshold-based decision function 
may be formulated. Such a decision function is 
specified with a closeness threshold δ  for which 
candidates with distances greater than the threshold 
are deemed outside the database. More precisely, 

we define a decision function   δd  as: 
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If all members from the same Group generate 
sufficiently close representations and members 
from different Groups generate sufficiently 
separated representations then this decision will 
provide perfect identification [14]. Calculations 
were made using multivariate statistical software 
(SPSS 10.0 for Windows). 
 
3.3  Fuzzy analysis 
A fuzzy clustering algorithm such as the Fuzzy C-
Means (FCM) algorithm has been used to find 
“compact” or “filled” clusters.  
In the last ten years the notion of fuzzy 
classification has been employed in statistics, but 
already various methods have been proposed for 
grouping a data set. A fuzzy classification of a data 
set consists in the subdivision of the initial data set 
into groups in order that each unit is assigned 
partially both to a group and more than one group. 
Therefore the main difference between classic and 
fuzzy classification consists in the fact that in the 
classic theory each unit is assigned for entire to a 
group, while in the fuzzy theory a function 
membership is assigned to each unit which 
measures how much the unit belongs to the group 
(or the groups) to which it is assigned; that value is 
in the range [0,1] [15]. 
The FCM algorithm [16], [17] was used to find 
clusters that resemble filled hyper spheres or filled 
hyper ellipsoids.  

Let { }, 1, ,jX x j N= = L
be a set of feature 

vectors in n-dimensional feature space with 

coordinate-axis labels [ ]nxxx ,,, 21 L , where 

[ ]Tjnjjj xxxx ,,, 21 L= . Let ( )CB ββ ,,1 L=  
represent a C-tuple of prototypes each of which 

characterizes one of the C clusters. Each 

iβ consist of a set of parameters. In the following, 

we use iβ to denote both cluster i and its 

prototype. Let iju represents the grade of 

membership feature point jx in cluster iβ . The 

CxN matrix [ ]ijuU =  is called a constrained 
fuzzy C-partition matrix if it satisfies the following 
conditions: 
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The problem of fuzzily partitioning the feature 
vectors into C clusters can be formulated as the 
minimization of the objective function [18]: 
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In the above equation, [ )∞∈ ,1m  is a weighting 

exponent called the fuzzifier, and ),(2
ijxd β  

represents the distance from a feature point jx  to 

the prototype iβ . Minimization of the objective 
function with respect to U subject to the constraints 
in (5) gives us: 
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where ( ){ }0,,1, 2 =≤≤= jjj xdCiiI β . 

Minimization of );,( XUBF  with respect to B 
varies according to the choice of the prototypes 
and the distance measure [17]. For example, in the 
FCM algorithm, the clusters are usually assumed to 
be compact and spherical in shape, and each of the 
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prototypes is described by the cluster center ic . If 
the distance measure is Euclidean or an inner 
product norm metric, these centers may be updated 
in each iteration using: 
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Calculations were made using fuzzy logic Toolbox 
(MATLAB 5.3, The Math Works, Inc, Natick, 
Mass). 
 
 
4   Test-bed description 
Referring to Fig. 2, one accelerometer S1 [19], has 
been installed on the free extremity of the follower 
for monitoring the acceleration of the follower 
motion. In addition, dynamical properties can be 
experimentally evaluated by using a dynamic 
torsion meter S2 [20], which was mounted on the 
actuator shaft of the motor. In order to provide 
suitable power supply to S2 and to reduce the noise 
in the measured signal a signal conditioner and 
amplifier U2 has been used. One tachymeter S3 
[21] and one encoder S4, [22] have been installed 
also on the cam shaft. In particular, the encoder 
gives the possibility to monitor the angle of the 
cam shaft, whereas the tachymeter is used to 
monitor the angular velocity of the cam shaft. 
Finally, in order to provide different input voltage 
for the sensors S1, S3 and S4 and motor M three 
different power supply sources A1, A2 and A3  have 
been used.  
The cam-follower mechanical system was 
assembled on a frame fixed to the test-bed plate. 
The radius of the base circle of tested cam is equal 
to 40 mm. The diameter of the roller is 24 mm. 
The roller follower moves horizontally along a 
fixed grooved shaft. The roller is maintained in 
contact with the profile of the cam by using a 
suitable spring. In addition, Lab View software 
[23], and AT-MIO-16F-5 Acquisition Card [24], 
have been used to acquire and manipulate the data 
from the accelerometer.  
 
 
 
 
 

 

 
Fig. 2. A general scheme of test-bed 
 
 
5 Results 
Since our study was performed by applying the 
DWT, we concentrate our analysis on the point 
where the profile of the cam changes. 
The statistical analysis performed by discriminant 
analysis confirmed the existence of 16 
clusters/groups (belonging to 4 main families). 
The 82.5% of original grouped cases was correctly 
classified. Tests performed on each group are 
reported in Tab.1. They influenced cam angular 
velocity, sense of rotation, tribological conditions 
and cam deviations. 
The eigenvalues, the percentage of explained 
variance and  canonical correlations referred to 
each canonical discriminant functions used in the 
analysis are shown in Tab. 2. They confirmed a 
good level of classification performed by 2 
canonical discriminant functions.. 
As expected, not all the variables (i.e., 10 
orthogonal entropies) employed were used for the 
best data classification for assigning each signal to 
the belonging group/family. 
 
 

Family Group 
signals 

1 3, 4, 11, 12 
2 7, 8, 15, 16 
3 5, 6, 13, 14 
4 1, 2, 9, 10 
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Group Characteristics 

3 OF0 L0 V5- 
4 OF0 L0 V5+ 

11 OF0 L0 V6- 
12 OF0 L0 V6+ 

Group Characteristics 
7 OF0 L1 V5- 
8 OF0 L1 V5+ 

15 OF0 L1 V6- 
16 OF0 L1 V6+ 

Group Characteristics 
5 OF1 L0 V5- 
6 OF1 L0 V5+ 

13 OF1 L0 V6- 
14 OF1 L0 V6+ 

Group Characteristics 
1 OF1 L1 V5- 
2 OF1 L1 V5+ 
9 OF1 L1 V6- 

10 OF1 L1 V6+ 
 
Legend: OF0 = no off-centre; OF1 = presence 
off-centre. 
L0 =  no lubrication; L1 = presence of lubrication. 
V5+ = 60 rpm and clockwise; V5- = 60 rpm and 
anticlockwise.  
V6+ = 80 rpm and clockwise; V6- = 80 rpm and 
anticlockwise.  
 
Tab.1 Characteristics of tests performed by means 
of test-bed 
 

Tab. 2 Statistical values of each canonical 
discriminant function 
 
The results of fuzzy clustering was very 
interesting: the 98% of groups was correctly 
classified. In particular, the group numbered as 11, 
belonging  to the family 1, was put between the 
families 1 and 4. Low electrical tension, occurred 
during the test, reduced the rotation speed of cam. 
The Fig. 3 shows the scatter-plot of all groups 
obtained by the application of fuzzy analysis. It is 

easy to see the existence of 4 well defined families 
and, for each of them, the existence of 4 groups or 
clusters. 

Fig. 3  A scatter-plot of all groups 
 
Since the fuzziness generates also an overlapping 
of groups, it could provide a more complex 
classification. Such a complexity, in part can easily 
be limited by using simple options during the 
selection of results, on the other hand it constitutes 
the real wealth of these methods that supply an 
amount of information more advanced with respect 
to the classical statistical methods. 
Moreover these algorithms concur to accept the 
real structure of the data by limiting to the 
minimum the forcing during the creation of the 
groups: probably an 'imprecise' model (in the sense 
of fuzzy) of the reality is a better representation of 
it instead of a precise model (in the mathematical 
sense of term). 
Finally, the introduction of medians shows 
improved performance in clustering data sets 
generated by heavy-tailed distributions like the 
Cauchy distribution. 
In fact, by processing the data-set modified by 
introducing the features calculated by medians as 
defined in the paragraph 3.1, we obtain a 99.3% of 
correct signal classification.  
 
 
6   Conclusions 
This work demonstrates that a powerful 
discrimination level is obtainable by means of 
orthogonal decomposition of signals with the 
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application of DWT in conjunction with statistical 
and fuzzy analysis. It is more relevant if we 
consider that in such assessments the co-presence 
of several stochastic factors can influence the 
performance and the response of experimental 
models [25][26].  
In this paper we proposed a new approach to 
feature selection.  
An extension of two key robust statistics to data set 
is presented and applied to the fuzzy C-means 
clustering algorithm. 
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