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Abstract: - The method and results of calculations of electromagnetic leakage field in the 3D transformer  model is 
presented in the paper. In the model, the geometry of windings, core (with 3 or 5 limbs) and tank very close to the 
actual one, was taken into account. The possibility of the tank’s screening was also taken into account. The 
mathematic problem comes down to search, in a dielectric area, for a complex magnetic potential that fulfils the 
Laplace’s equation and boundary conditions of an impedance type on conducting surfaces. Not commonly known and 
rarely used numerical method of boundary type was applied to solve the problem in question. The Fiction Sources 
Method (FSM) relies on an iterative approximation of searched potential function using the linear combination of 
fundamental solutions. The results of calculations of field components and stray loss density distribution on the surface 
of transformer tank is presented for several example versions of model.  
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1 Introduction 
The purpose of this paper was to create a numerical 
program to calculate the quasi-stationary distribution of 
electromagnetic leakage field in the 3D model of the 
high-power transformer. This model takes into account 
the most essential transformer’s elements of shapes very 
close to the reality (Fig.1). The model under 
consideration consists of system of cylindrical windings, 
3 or 5 limb core and an oval tank with a flat bottom and 
cover. It enables also regarding the tank surface 
screening. It is assumed that: 
- the conductivity and permeability of magnetic metal 

parts are constant (media uniformity, isotropy, and 
linearity),  

- the metal thickness is significantly larger than the 
depth of electromagnetic  field penetration (this 
assumption is adequately met for commonly used 
materials and frequencies in power engineering 
industry), 

- the time variations of the field are sinusoidal (quasi-
stationary state),  

- the displacement currents may be neglected (the field 
frequency is not too high). 

The problem of leakage field calculation comes down to 
the solution of the Laplace’s equation for the complex 
magnetic potential with an impedance boundary 
conditions on the surfaces of core and tank [1, 2, 3, 5].  

 

 
Fig.1 The analysed model of transformer (with five limb 
core version) 
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The solution of such a problem in question was obtained 
via application of certain not commonly known and 
rarely used numerical method, of which main idea relies 
on approximation of searched potential function using 
the linear combination of fundamental solutions of the 
Laplace’s equation [4]. The singular points of those 
solutions (“fiction sources”) are assumed outside of the 
considered area of a dielectric interior of transformer 
(i.e. inside of the core and tank).  

Before, this model was considered using much more 
complex boundary elements method (BEM) [1, 2, 3]. In 
this paper, the comparison of results obtained by using 
both methods, and measurements performed on the real 
model of transformer are presented. 

 
 

2  Description of transformer model  
The geometry of the analysed model, and the coordinate 
system are presented in Fig. 1. 
   The transformer windings are presented by the 
infinitely thin cylinders with currents flowing 
circumferentially and having uniform density along 
each winding height. It is assumed that for each limb the 
currents flowing through Nw windings (only 2 windings 
per limb are presented in Fig. 1). It means that their 
phase replacement in relation to  the phase of the middle 
limb current are equal to π3/2± .  
  The transformer core consists of three limbs of circular 
cross-section, two external limbs of elliptic cross-
section and two yokes of circular cross-section. The 
limbs and yokes are of ideal ferromagnetic ( ∞=µ ). 
  The tank and the covers are formed by regular shells of 
planar and cylindrical shape, and are made of an 
isotropic metallic conductor of constant conductivity γ  
and magnetic permeability µ. The possibility of tank’s 
screening is taken into account by assuming different  
parameters γ and µ for some part of the tank surface.  
 
 
3  Mathematical expression of problem 
The mathematical formulation of the problem is 
described in details in [3] (see also [1, 2]).  

In the dielectric region, the complex scalar magnetic 
potential is defined as: 

 
                              ϕgrad=B                                  (1) 
 

which satisfies the Laplace’s equation: 
 
                              0=∆ϕ                                        (2) 
 

with the following boundary condition: 
 

-  for the core surfaces Ω1  ( ∞=µ ) 
 

                                         0=ϕ                                    (3) 
 
      - for the tank and cover surfaces Ω2  (impedance 
type condition): 
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Laplace’s operator with respect to the tangential surface 
coordinates  s1, s2  (see Fig.1): 
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are Lame parameters.  
  Let us introduce the convenient operator: 
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The equations (3), (4) can be rewritten together in more 
simple form: 
 

[ ]  for       210)( Ω∪Ω=Ω∈= rrϕβL                            (8)
  

           

 
  The determination of the potential ϕ  allows to 
determine  the magnetic field in the dielectric areas 
from (1), as well as tangential components of the 
electric field on the tank surface: 
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and then consequently stray loss density S in a 
conducting media by the normal component of the 
Poynting’s vector: 
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4 Solution method  
    Due to three planes of symmetry of the model (x = 0, 
y = 0, z = 0) it was possible to limit the solution to only 
one of eight symmetric parts, e.g. 0≥x , 0≥y , 0≥z . 
The borders of the region, representing the surfaces of 
the tank, the cover and the core have been divided into 
seven planar and cylindrical areas (three limbs, yoke, 
cylindrical and flat parts of tank and cover). The local 
curvilinear orthogonal coordinate systems s1, s2, s3 are 
introduced for each area. The coordinates s1, s2 are 
current coordinates tangential to the surface area 
(circuital and axial, respectively), and s3 is an outward 
normal to the surface.  

The searched potential ϕ  is presented as a sum of 
two components, which individually satisfy the 
Laplace's equation: 

  
                 )()()( 10 rrr ϕϕϕ +=                            (11) 
 

where ϕ0(P) is an exciting (applied) field potential, due 
to currents through the windings, ϕ1(r) is an induced 
field potential, due to the presence of the core and tank 
in the system. 
 The exciting field potential for one winding with 
radius Rk and height hk  (k- number of winding) can be 
determined in local cylindrical coordinates r, θ,  z   by 
means of integration, from formulae [3]: 
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The integral (12) is solved numerically. Full exciting 
field potential is presented by the sum: 
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 The potential ϕ1(r) is approximated by the following 
formulae: 
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are fundamental solutions of the Laplace’s equation. 
Their singular points rn (“fiction sources”) lay outside 
the dielectric area, where the solution is searched. For 
considered model, they are fixed in the nodes of the 
regular network on the plane parallel to the boundary of 
dielectric area  surfaces, inside the core (n = 1,.., Nc) 
and outside the tank and cover (n =  Nc+1, .., N). 
 The complex coefficients λn, are found iteratively based 
on the boundary conditions. Let us define the  boundary 
error of the solution at the i-th step of iteration as the 
functional: 
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At each step of iteration, set Ki (i - step number) of 
parameters λn is determined in such manner that 
boundary error is minimized. Let us assume that after i-
1 steps, M parameters λn have been found. Based on the 
best approximation (least squares) method, at the i-th 
step we have obtained the linear set of equations: 
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and    [ ])()( rr nn FLG β≡ . 
  The integrals (18), (19) and system of equations (17) 
are solved numerically (using the Gauss method). It has 
been proven [3] that consecutive values of boundary 
errors (16) represent a non-increasing sequence, hence it 
is convergent. 
  After determining the factors λn and substituting them 
to (14) and (11), we obtain the searched solution. Then, 
based on (1) we can find the components of  the 
magnetic field, and from (9) and (10), the electric field 
and stray loss density on the tank surface. 
 
 
 5  Results of calculations (examples) 
The algorithm as described above was the basis for a 
computing programs written in Fortran 77 and adopted 
to widely available personal computers. Before, this 
model was considered using much more complex 
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boundary elements method (BEM) [3]. To verify both 
methods as well as to estimate its accuracy, the 
calculated results were compared with those obtained 
form the measurements, carried out on a small size 
model of a the power transformer1 (with 3 limb core). 
The comparison of the of the calculated and measured 
results is given in Fig. 2 - 6. The complete distribution 
of flux density components on the transformer tank 
surface of the model under consideration, calculated by 
the fiction sources method, are presented in Fig 7 – 13. 
 

 

0 100 200 300 400 500 600 700 800 900 1000 1100
s1 (mm)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B1
 (

m
T)

1

2

3

 
 
Fig. 2 Distribution of the circuital component of the flux 
density along the transformer tank circumference at the 
height corresponding to the winding. 1 – measurements, 
2 – results of BEM; 3 – results of FSM. 
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Fig. 3 Distribution of the normal component of the flux 
density along the transformer tank circumference at the 
height corresponding to the winding. 1 – measurements, 
2 – results of BEM; 3 – results of FSM. 
 

                                                 
1 Measurements on a model were carried out by Jacek 
Lasociński D. Sc. (E.E.) from Transformer Division of 
Institute of Power Engineering. 
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Fig. 4 Distribution of the axial component of the flux 
density along the transformer tank circumference at the 
half of the tank height. 1 – measurements, 2 – results of 
BEM; 3 – results of FSM. 
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Fig. 5 Distribution of the axial component of the flux 
density along the transformer tank height for y = 0. 1 – 
measurements, 2 – results of BEM; 3 – results of FSM. 
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Fig. 6 Distribution of the normal component of flux 
density along the transformer tank height for y = 0.             
1 – measurements, 2 – results of BEM; 3 – results of 
FSM. 
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Fig.7 Distribution of the circuital component of the flux 
density on the transformer tank surface (3 limb core). 
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Fig.8 Distribution of the axial component of the flux 
density on the transformer tank surface (3 limb core). 
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Fig.9 Distribution of the normal component of the flux 
density on the transformer tank surface (3 limb core). 
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Fig. 10 Distribution of the circuital component of the 
flux density on the transformer tank surface (5 limb 
core). 
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Fig.11 Distribution of the axial component of the flux 
density on the transformer tank surface (5 limb core). 
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Fig. 12 Distribution of the normal component of the flux 
density on the transformer tank surface (5 limb core). 
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Fig.13 Distribution of the stray loss density on the 
transformer tank surface (5 limb core). 
 
 

5  Conclusions 
The presented method enables, with use of commonly 
accessible PC equipment, determining the 
electromagnetic field distribution in complex three 
dimensional systems, and achieved accuracy is fully 
satisfactory for technical purposes. By the application of 
the boundary type method and iteration fulfilment of 
boundary conditions, a relatively small numerical model 
was achieved despite the fact that complex model of 
transformer was considered. The accuracy of a method 
(error of boundary conditions’ fulfilment) relies mainly 
on the digitisation size of the boundary surfaces, a 
number of fundamental solutions used for 
approximation of searched function of magnetic 
potential, way of arrangement of their singular points, 
and a number of iteration steps. It was stated that best 
results are achieved when those points are located in the 
relation to the boundary of considered area (metal 
surfaces of transformer) with distance about 1.5 - 3 
times greater than linear size of digitising elements on 
boundary to calculation integrals (14), (15). It was 
stated that the iteration version of method enables, in the 
principle, unlimited extension of model without 
deterioration of accuracy of boundary conditions' 
fulfilment (and therefore calculations' accuracy) and the 
only cost of that is a longer time of program execution 
(larger number of iteration steps).   
 The comparison results of calculations achieved sing 
the proposed method with results achieved using much 
more complex boundary elements method shown that 
there are not significance differences between them. The 
computing program, suitable for personal computers 
may be already practically used for studies when 
designing new transformers. 
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