
 Performance Analysis of an Error Sharing Agent running on
a Multimedia Collaboration Home Study System

Eung-Nam Ko

Department of Information & Communication
Cheonan University

115 Anseo-Dong, Cheonan, ChungNam, Korea, 330-704
Korea

Abstract: - A multimedia collaboration home study system offers real time multimedia distance education system
environment by home PCs and network environment. It supports real or non-real type. Also, it does not restrict on
space among teachers and students into cyber-space made by network. Networks are PSTN, LAN, MAN, and
WAN. It has an interaction, various communication types, a question and an answer, multi-session, application
sharing, high degree of efficiency, high degree of cooperative. After a conventional method detects an error, it
detects and classifies an error type by polling periodically all the process. But it is not efficient method. Therefore,
the main idea of proposed method is to detect an error type by polling only process with relation to session
manager. This paper explains a performance analysis of an error sharing system running on multimedia
collaboration home study system using the rule-based SES(System Entity Structure) and DEVS(Discrete Event System
Specification) modeling and simulation techniques. In DEVS, a system has a time base, inputs, states, outputs, and
functions.
 Key-Words: - multimedia collaboration home study system, error type, an error sharing system , polling process,

rule-based, SES, DEVS.

1 Introduction
The need for distributed multimedia systems is
growing rapidly in a variety of fields including
business, manufacturing, education, CAD/ CAE,
medicine, weather, entertainment, etc[1]. Different
methods of a distance education include online
education using PC communication, broadcasting
education using TV or CATV, distance video
education using broadcasting equipment and leased
line, and the form of multimedia a distance education
of CBM(Computer Based Multimedia) is based[2-4].
When it comes to various types of collaboration in
distributed multimedia applications, the use of shared
object is necessary[5,6]. These components are not
always guaranteed to support enough reliability and
availability for the applications. It is critical to discuss
how to make and keep the systems so reliable and
available that even fault-tolerant applications could be
computed in the systems[7].
After a conventional method detects an error, it detects
and classifies an error type by polling periodically all
the process. But it is not efficient method. Therefore,
the main idea of proposed method is to detect an error
type by polling only process with relation to session
manager. This paper explains a performance analysis
of an error sharing system running on multimedia

collaboration home study system using the rule-based
SES and DEVS modeling and simulation techniques.
In DEVS, a system has a time base, inputs, states,
outputs, and functions. The purpose of this paper is to
compare and analyze a performance of proposed
method with conventional method by using DEVS
formalism for an error sharing agent running on a
multimedia collaboration home study system.
The rest of this paper is organized as follows. In
section 2, Discrete event modeling, DEVS(Discrete
Event System Specification) formalism ,and
SES(System Entity Structure) are reviewed. In
section 3, we show ECA Error Classification Agent)
running on a multimedia collaboration home study
system. In section 4, we propose a modeling for an
error sharing agent and performance analysis of
proposed method with conventional method by using
DEVS formalism. Finally, in section 5, we summarize
our paper.

2 Related Works
The DEVS-Scheme environment is based on two
formalism:discrete event-system specification(DEVS)
and system entity structure(SES)[8,9]. In this section,
DEVS and SES are reviewed.

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp140-145)

2.1 Discrete Event Simulation
Differential equations employed to describe
continuous systems have a long history of
development whose mathematical formalization came
well before the advent of the computer. In contrast,
discrete event simulations were made possible by, and
evolved with, the growing computational power of
computers. Since the early 70’s, work has been
proceeding on a mathematical formalism for modeling
discrete event systems. One approach, inspired by the
systems theory concepts of Zadeh and Dosoer(1963),
Wymore(1967), Mesarovic and Takahara(1975), and
Arbib and Padulo(1974), attempted to cast both
continuous and discrete event models within a
common systems modeling framework. This approach
was elaborated in a number of publications primarily
summarized in the books(Zeigler, 1976) and (Zeigler,
1984a), and is reviewed in (Zeigler, 1984b). Systems
modeling concepts were an important facet in a
movement to develop a methodology under which
simulation could be performed in a more principled
and secure manner. The recent advent of high
performance artificial intelligence software and
hardware has facilitated the transfer of this simulation
methodology from research to practice(Elzas et al.,
1986)[10,13].

2.2 DEVS formalism
The DEVS formalism introduced by Zeigler provides
a means of specifying a mathematical object called a
system. The DEVS formalism is a theoretical, well
grounded means of expressing hierarchical, modular
discrete event models. Basically, a system has a time
base, inputs, states, and outputs, and functions for
determining next states and outputs given current
states and inputs. In the DEVS formalism are defined
by the structure[10-13].

M = < X, S, Y, δint, δext, λ, ta >
 where X: a set of input events,
 S: a set of sequential states,
 Y: a set of output events,
 Int:S->S: internal transition function,
 ext: Q x X -> S : external transition function

 λ : S -> Y: output function
 ta : time advance function.

Basic models may be coupled in the DEVS formalism
to form a multi-component model which is defined by
the structure[10-13].

DN = < D, {Mi}, {Ii}, {Zij}, select >
 where DN: Diagraph Network,
 D : a set of component names,
 {Mi}: a component basic model
 {Ii}: a set, the influences of I and for each j

in Ii,
 {Zij}: a function, the I-to-j output transition,
 select: a function , the tie-breaking selector.

2.3 SES formalism
The system entity structure(SES) directs the synthesis
of models from components in a model base. The SES
is a knowledge representation scheme that combines
decomposition, taxonomic, and coupling
relationships. The SES is completely characterized by
its axioms. However, the interpretation of the axioms
cannot be specified and thus is open to the user. When
constructing a SES, it may seem difficult to decide
how to represent concepts of the real world. An entity
represents a real world object that either can be
independently identified or postulated as a component
of a decomposition of another real world object. An
aspect represents one of decomposition out of many
possibility of an entity. The children of an aspect are
entities representing components in a decomposition
of its parent. A specialization is a node of classifying
entities and is used to express alternative choices for
components in the system being modeled. The
children of a specialization are entities representing
variants of its parent.
For example, in an SES for a computer system, the
entity printer could have such specialization as: size,
typeface, and interface-type. The children of
interface-type might be parallel interface and serial
interface. These are variants for the interface of
printer. That printers also come in various sizes is
represented in the specialization size[10-14]. The
properties of a SES are illustrated in Figure 1. The root
entity is AB. AB is shown as having a decomposition
into A and B, i.e., it is a system built from two
component systems. The entities of an aspect
represent distinct components of a decomposition. A
model can be constructed by connecting together some
or all of these components. The aspects of an entity do
not necessarily represent disjoint decompositions. A
new aspect can be constructed by selecting from
existing aspects as desired. A has a specialization,
shown by two vertical lines, called A-spec entities A1,
and A2. The triple vertical bars connecting B and
B-dec represent a special type of decomposition called

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp140-145)

a multiple decomposition. A multiple decomposition
is used to represent entities whose number in a system
may vary[10].

Fig. 1 The example of SES

3 An Error Sharing Agent
This paper explains a performance analysis of an error
sharing system running on a multimedia collaboration
home study system using the rule-based SES and
DEVS modeling and simulation techniques.

3.1 a Multimedia Collaboration Home Study

System
DOORAE(Distributed Object Oriented
collaboRAtion Environment) is a framework
technology for computer collaborative work. It has
been running since April 1996 at SKKU(Sung Kyun
Kwan Univ.) in Korea. It has primitive service
functions. Service functions in DOORAE are
implemented with object oriented concept. We call
agent layer. As shown in figure 2, the organization of
DOORAE includes 4 layers. The four layers consist of
a communication layer, a system layer, a DOORAE
agent layer, and a multimedia application layer. The
communication network is being presently developed
with UDP broadcasting in order to decrease
communication rate and TCP/IP on the Ethernet and
ATM. Additional packet form has been defined and
expanded for realization of DOORAE’s functions.
The hardware environment of DOORAE consists of
multimedia PCs, a network adapter, keyboard/mouse,

image scanner, microphone, video camera, monitor,
speaker, printer, video processor and accelerators. The
operating system was first developed on windows 3.1
but presently windows 98, windows 2000, windows
NT, and windows XP are supporting the development
as well.

Fig. 2 The organization of DOORAE layer

DOORAE agents are composed of AMA(Application
Management Agent) that handles request of
application, SEMA(SEssion Management Agent) that
appropriately controls and manages session and
opening/closing of sessions, even in the case of several
sessions being generated at the same instant,
COPA(Coupling Agent) that provides participants
same view, CRPA(CRoss Platform communication
Agent) that manages formation control of DOORAE
communication protocol, ACCA(Access and
Concurrency Control Agent) that manages access
control and concurrently control agent,
ASPA(Application Program Sharing Agent),
INA(Intelligent Agent) that manages convertible
media data between IBM compatible PC and Mac,
MECA(Media Control Agent) that supplies user
access and convenient application.

 AB

 AB-dec

A B

 A-spec B-dec

 A1 A2

 applications

PSTN / PSDN / LAN / WAN

Network protocol, Media stream

multimedia collaboration
home study system

DOORAE

SEMA AMA

COPA CRPA

ACCA MECA

APSA INA

Media
control

Communicati
-on
control

EDRA

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp140-145)

The multimedia application layer includes general
application software such as word processors,
presentation tools and so on. And it supplements
various functions such as video conference and voice
conference for multimedia collaboration home study
system

3.2 ECA
EDRA consists of EDA(Error Detection Agent),
ECA(Error Classification Agent), and ERA(Error
Recovery Agent). ECA consists of ES(Error Sharing)
and EC(Error Classification). EDA detects an error by
using hooking methods in MS-Windows
API(Application Program Interface). When an error
occurs, A hook is a point in the Microsoft Windows
message-handling mechanism where an application
can install a subroutine to monitor the message traffic
in the system and process certain types of messages
before they reach the target window procedure.
Windows contains many different types of hook.

3.2.1 ES(Error Sharing)

As shown in Fig.3, the roles of ES(error and
application program sharing) are divided into two
main parts; Abstraction and sharing of view
generation.

Fig.3 Error and Application Sharing Process

Error and application program sharing must take
different from each other according to number of
replicated application program and an event command.
This proposed structure is distributed architecture but
for an error and application program sharing,
centralization architecture is used. An error and
application program sharing windows perform process
communication of message form. In the middle of this
process, there are couple ways of snatching message
by error and application sharing agent. ESA informs
SM(Session Manager) of the results of detected errors.
Also, ESA activates an error for application software
automatically. It informs SM of the result again. That
is, ESA becomes aware of an error occurrence after it
receives requirement of UIA and transmit it.

3.2.2 EC(Error Classification)
As shown in Fig.4, you can see the organization of
ECA. EDRA consists of EDA, ECA, and ERA. ECA
has a function of an error classification.

Fig.4 The organization of EC

EC consists of frontend, backend, analyzer,
coordinator, filter, and learner. Frontend has a
function of playing a role in receiving an error
detection information from EDA. Backend has a
function of playing a role in receiving an error
recovery information from ERA. Coordinator informs
SM of the result. Analyzer has a function of
classifying error’s information that is received from
frontend. Learner has a function of classifying the type

<<E

Network view /event view/event

<ES>
hook table

<ES>

application

<ES>

Virtual app.

Filter func.

<ES>

Virtual app.

Filter func.

Event
Distri-
buter

Filter
function

 EC

SM

EDA

frontend

analyzer

learner

filter

coordinator

KB

ERA

PDB

backend

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp140-145)

of errors by using learning rules with consideration of
information from analyzer. Filter has a function of
storing an error’s history information in KB(Know
ledge Base) from error information that is classified by
learner.

4 Performance Analysis by DEVS
To evaluate the performance of the proposed system,
an error sharing method was used to compare the
performance of the proposed model against the
conventional model by using DEVS formalism.

(Simulation 1)
In the first simulation, we have considered composition
component as shown in Table 1. The atomic models are
EF, RA1, UA1, and ED1. The combination of atomic
models makes a new coupled model. First, it receives
input event, i.e., polling interval. The value is an input
value in RA1 and UA1 respectively. An output value is
determined by the time related simulation process RA1
and UA1 respectively. The output value can be an input
value in ED1. An output value is determined by the
time related simulation process ED1. We can observe
the result value through transducer.

Table 1 Atomic Model and State Variable

Compo
nent

State
Variable

Contents

EF(gen
r)

Poll_int Polling interval

RA1 Ra_re_time
App_cnt1

Ra_re_t_a

Response time
The number of

application program
Accumulated response
 time

UA1 Ua_re_time
App_cnt2

Ua_re_t_a

Response time
The number of application

program
Accumulated response
 time

ED1 Ra_re_t_a

Ua_re_t_a

Tat_t_a

RAaccumulated response
time
UAaccumulated response
time
RAaccumulated response
time +
UAaccumulated response
 time

(Simulation 2)
In the second simulation, we have considered
composition component as shown in Table 2. The
atomic models are EF, RA2, and ED2. The
combination of atomic models makes a new coupled
model. First, it receives input event, i.e., polling
interval. The value is an input value in RA2. An output
value is determined by the time related simulation
process RA2. The output value can be an input value in
ED2. An output value is determined by the time related
simulation process ED2. We can observe the result
value through transducer.

Table 2 Atomic Model and State Variable

Compone
nt

State
Variable

Contents

EF
(genr)

Poll_int polling interval

RA2 Ra_re_time
App_cnt1

Ra_re_t_a

Response time
The number of
 application program
Accumulated response
 time

ED2 Ra_re_t_a

Sm_t_a

Tat_t_a

RA accumulated response
time
Accumulated time to
register information in SM
RAaccumulated response
 time +
UAaccumulated response
 time

We can observe the following. The error type detected
time interval is as follows.
Conventional method:
 Poll_int*(App_cnt1 + App_cnt2)
Proposed method:
 Poll_int*(App_cnt1) + Sm_t_a
Therefore, Poll_int*(App_cnt1 + App_cnt2) >
 Poll_int*(App_cnt1) + Sm_t_a
That is, proposed method is more efficient than
conventional method in error type detected method.

5 Conclusion
This paper explains a performance analysis of an error
sharing system running on multimedia collaboration
home study system using the rule-based SES and
DEVS modeling and simulation techniques. The roles
of ES(error and application program sharing) are
divided into two main parts; Abstraction and sharing

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp140-145)

of view generation. Error and application program
sharing must take different from each other according
to number of replicated application program and an
event command. This proposed structure is distributed
architecture but for error and application program
sharing, centralization architecture is used. ECA has a
function of an error classification. EC consists of
frontend, backend, analyzer, coordinator, filter, and
learner. Frontend has a function of playing a role in
receiving error detection information from EDA.
Backend has a function of playing a role in receiving
error recovery information from ERA. Coordinator
informs SM of the result. Analyzer has a function of
classifying error’s information that is received from
frontend. Learner has a function of classifying the type
of errors by using learning rules with consideration of
information from analyzer. Filter has a function of
storing an error’s history information in KB(Know
ledge Base) from error information that is classified by
learner. To evaluate the performance of the proposed
system, an error sharing method was used to compare
the performance of the proposed model against the
conventional model by using DEVS formalism.
Our future work is to extend to autonomous agents for
detecting and recovering error and to generalize it to
adjust any other system.

References:
[1] Naveed U. Qazi, Miae Woo, Arif Ghafoor, A

Synchronization and Communication Model for
Distributed Multimedia Objects, Proceedings
ACM Multimedia’93, Anaheim, California,
August 1-6,1993, 147-155.

[2] Kyung E. Lim, Sung C. Ahn, and Dae J. Hwang,
“Intelligent Mirroring Mechanism for
Interoperability Between PC-Based Platforms”, In
Proc. of the IASTED International Conference on
Modeling and Simulation, Pittsburgh, U.S.A.,
April 27-29, 1995.

[3] Bohdan O. Szuprowicz, “Multimedia Networking
and Communication Computer Technology
Research Corp., 1994, pp.149-175.

[4] Gil C. Park, Dae J. Hwang, “Design of a
multimedia distance learning system: MIDAS”, In
Proc. of the IASTED International Conference on
Modeling and Simulation, Pittsburgh, U.S.A.,
April 27-29, 1995.

[5] P. Dewan, “Tools for Implementing Multi-user
Interface”, Trends in Software: Issue on User
Interface Software I, NewYork, John Wiley and
Sons Inc., 1993, pp. 149-172.

[6] C.A.Ellis, S.J.Gibbs, and G.L.Rein, “Groupware:
Some Issues and Experiences”, CACM 34(I),
Jan.1991, pp.38-58.

[7] Hiroaki Higaki, Kenji Shima, Takaynki
Tachikawa, Makoto Takizawa, Checkpoint and
Rollback in Asynchronous Distributed
Systems, IEEE Infocom’97 Proceedings Volume
3, April 7-12, 1997, 1000-1007.

[8] Bernard P.Zeigler, Tae H. Cho, and Jerzy W.
Rozenblit, A Knowledge-Based Simulation
Environment for Hierarchical Flexible
Manufacturing, IEEE Transaction on Systems,
Man, and Cybernetics-Part A: System and
Humans, Vol. 26, No. 1, January 1996, 81-90.

[9] Tae H. Cho, Bernard P.Zeigler, Simulation of
Intelligent Hierarchical Flexible Manufacturing:
Batch Job Routing in Operation Overlapping, ,
IEEE Transaction on Systems, Man, and
Cybernetics-Part A: System and Humans, Vol.
27, No. 1, January 1997, 116-126.

[10]Bernard P.Zeigler, Object-Oriented Simulation
with hierarchical, Modular Models, Academic
Press,1990.

[11]Bernard P.Zeigler, Multifacetted Modeling and
Discrete Event Simulation, Orlando, FL:
Academic, 1984.

[12]Bernard P.Zeigler, Theory of Modeling and
Simulation, John Wiley, NY, USA, 1976, reissued
by Krieger, Malabar, FL, USA, 1985.

[13]A.I. Conception and B.P. Zeigler, The DEVS
formalism: Hierarchical model development,
IEEE Trans. Software Eng., vol. 14, no.2, 1988,
228-241.

[14]Chi, S.D., Lee, J.S., Lee, J.K. and
Whang.J.H.,NETE: Campus Network Design
Tool, in Proc. IASTED International Conference,
July, 1997.

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp140-145)

