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Abstract: - An exhaustive method for the detection of short-term perfect predictors in complex binary 

sequences is presented. As short-term perfect predictors we assume bit sequences that give risk-free prediction 

of the value of the next bit. The method was tested on binary data sets produced by applying a simple binary 

transformation on the data of the logistic function for a variety of values of the nonlinearity parameter r. 

Despite the chaotic nature of the logistic function and the complexity of the obtained binary sequences, an 

unexpected high number of prediction rules were detected. In some cases the predictability reached up to 

100%. In the worst case, (for r = 4.0), the predictability is up to 33.3%. Finally, as it was found via extensive 

simulations the number of L-bit perfect predictors as a function of their bit-length L is given by the Fibonacci 

recursive formula. 
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1   Introduction 
Predicting or forecasting the dynamics of complex 

systems is a difficult task, usually beset with a 

number of problems [1, 2]. In complex systems, i.e. 

systems with many degrees of freedom that are 

highly coupled, these problems are related to the 

limitations of the available data and pseudo-

randomness generated from the existing low 

dimensional chaotic dynamics of the systems.  In the 

case of experimental data, additional errors related 

to the observational procedure and errors from the 

presence of high dimensional noise are usually 

present [3,4]. 

     One of the well known mathematical functions 

that present rich nonlinearity and highly complex 

dynamics is the logistic function defined as: 
 

xn+1 = r * xn * ( 1 - xn )       (1) 

 

     Eq. (1) was proposed as a mathematical model of 

population dynamics [5]. Although simple, Eq. (1) 

may provide a variety of different dynamical 

characteristics, strongly depended on the value of 

parameter r. The parameter r is an expression of the 

nonlinearity of the system. For values of r in the 

interval [0,4] and initial value x0 in the interval [0,1] 

the logistic function is bounded in [0,1]. For values 

of r larger than 4, or for values of x0 larger than 1, 

the logistic function is unbounded. 

      For values of r in the range (1,3), after a 

transient phase, the dynamics of the logistic system 

are settled to the fixed point xs = 1 - 1/r and remain 

stable thereafter. Therefore, the value xs is the 

stability condition of the system, i.e. a fixed-point 

attractor that the system sooner or later converges to. 

For r = 3 a different behaviour is presented: the 

dynamics of the system bifurcate to give a period of 

two. A further increase of the value of r results to 

successive bifurcations and the related period 

doubling phenomenon that is observed, which refers 

to the resulting increase of the cycling period of the 

generated sequence of Eq. (1). The period doubling 

phenomenon leads to chaotic behaviour, i.e. infinite 

period for values of r in the range [3.57, 4.0]. As a 

result of the above characteristics, the dynamics of 

the logistic function was investigated by a large 

number of researchers following different methods 

of approximation and analysis and concluded to 

interesting results. One of the disciplines that were 

investigated was the derivation of forecasting 

methods. 

     The problem of predicting chaotic timeseries 

attracted the interest of many researchers. Although 

the theory of chaos places fundamental limits on 

long-term prediction, it suggests possibilities for 

short-term prediction. Several works, regarding this 

topic, have been published for example the Farmer’s 

prediction algorithm [6]. A different approach is due 
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to Packard [3], who for the first time applied a 

binary transformation on the raw data of the logistic 

function and investigated predicting abilities on the 

produced complex binary data. Packard proposed a 

Genetic Algorithm search for predicting rules in 

such binary series. The results of his investigation 

were that there exist some probabilistic predicting 

rules. 

     In this work a new approach that provides perfect 

predictors in complex binary data is presented. 

Specifically, following the methodology presented 

in [3], instead of using raw data we generated binary 

sequences by applying a simple binary 

transformation. The method is capable for detecting 

and revealing binary patterns that can account as 

perfect predictors. A binary pattern is to be 

considered as a perfect predictor if its appearance 

anywhere in the data set is declarative of the value 

for the next bit. In other words, a perfect predictor, 

consisted from a bit sequence, can account for next 

bit risk-free prediction. 

 

 

2   Methods 
 

 

2.1  Derivation of binary sequences 
The first step to generate complex binary sequences 

is to generate raw data sequences xn(x0, r) with the 

use of the logistic function of Eq. (1). Then, the 

corresponding binary sequences bn(x0, r) were 

generated by applying the simple transformation: 

 

       { n+1 n

n+1 n
0

  if  x    x

   if  x   >  x

0
(x ,r) 1 =  bn

≤
    (2) 

 
Eq. (2) generates 1 in the case of an increase of the 

logistic function, otherwise it generates 0. The case 

xn+1 = xn, although included in Eq. (2), is of no 

practical meaning, since it is the condition for steady 

state stability to a fixed point, obviously not present 

in chaotic dynamics considered here. A similar 

transformation was used in [3] where the binary 

sequences were generated comparing the raw data 

values with the threshold value of 0.5. When the raw 

value was greater that 0.5 the output was 1; 

otherwise the output was 0. 

     In order to investigate for the existence of binary 

patterns that actually can be considered as perfect 

predictors an exhaustive search method was applied 

on the generated binary sequences bn(x0, r). The first 

task was to utilize exhaustive search to detect the 

binary patterns of given length L that were found in 

bn(x0, r). Although the chaotic nature of the raw 

data, and the resulted complexity of the obtained 

binary sequences bn(x0, r), it was found that indeed, 

there exist some binary patterns that are detected in 

higher rates than others. In addition, some binary 

patterns were absent from the binary sequences. The 

second task was to apply again exhaustive search on 

the same binary sequences and detect the binary 

patterns of length L+1 which were present in that 

data set. This task was performed in order to 

investigate for the presence of certain binary 

patterns of length L in the binary sequences that 

could account as good or, in the ideal case, as 

perfect predictors of the next bit of the data set. 

Results of the second task indicated that this holds in 

surprisingly high number of cases. 

 

 

2.2   Exhaustive search 
A number of raw time series xn(x0, r) of the logistic 

function were derived by iterative application of Eq. 

(1) for a variety of values of the parameters r and x0. 

Then, binary sequences bn(x0, r) consisted of 10
6
 bits 

were generated by applying the transformation of 

Eq. (2) on the raw data xn(x0, r). These binary 

sequences were given as an input to the exhaustive 

search method. According to that method for any 

given pattern length L, all the possible binary 

patterns of length L were constructed and their 

frequency of appearance in bn(x0, r) were estimated. 

For a given binary pattern length L, the number of 

all possible binary patterns is 2
L
. 

      

 

3 Results 
Our experiments were performed for a broad 

spectrum of different values of the parameter r. 

Results reported in the present work refer to three 

different values of r, namely 3.6, 3.9 and 4.0.  

 

 

Table 1 

Binary patterns found in bn(0.4, 3.6).  
                The total number of patterns is 10

6
. 

 

L Patterns 

 

Frequency  

1 

 

                0 

               1 

500000 

500000 

2               01               

10 

500000 

500000 

3             010               

101 

500000 

500000 

4           0101               

1010 

500000 

 500000 
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According to the codification of Eq. (2) (0 means 

decrease of the consecutive x-value, whereas 1 

means increase), the interpretation of this result is 

that for r = 3.6, an increase of the logistic function 

is always followed by a decrease and vice versa. 

This leads to the following simple prediction rule: 

0’s are always followed by 1 and 1’s are always 

followed by 0. The subsequent absence of the 

patterns 00 and 11 in that row indicates that despite 

the chaotic character of the raw data xn(0.4, 3.6), 

there is a norm of continuously repeated rise and fall 

of the logistic function. This simple prediction rule 

is reflected in the patterns of length L = 3 and L = 4 

that were found in bn(0.4, 3.6) and are presented in 

the third and the fourth row of Table 1 respectively. 

Independently of the length L of the pattern, for each 

particular value of L there exist only two patterns, 

consisting of bits in a consequently alternating 

fashion. As a direct result of the revealed prediction 

rule any pattern is a perfect predictor of the next bit, 

since, zero-terminated patterns (i.e., its last bit is 0) 

are followed by an 1, whereas, one-terminated 

patterns (i.e., its last bit is 1) are always followed by 

a 0. Therefore the frequency of appearance of 

perfect predictors in the case of bn(0.4, 3.6) is 100%. 

     Quite different are the results obtained from the 

analysis of bn(0.4, 3.9) which are presented in Table 

2. The first to notify in Table 2, is that there is no 

equal distribution of 0’s and 1’s in bn(0.4, 3.9). 

Specifically, the results of the investigation of the 

frequency of appearance of bit-strings with length L 

= 1, indicated the existence of 409338 0’s ( ≅ 41% ) 

and 590662 1’s, ( ≅ 59% ) in bn(0.4, 3.9). This result 
directly indicates that the logistic function is more 

frequently (18%) increased than decreased for r = 

3.9. Further investigation, indicated that the critical 

value rc for above which the binary sequence bn(0.4, 

r) do not appear a 50%-50% distribution of 0’s and 

1’s is lying in the interval 3.67857 < rc < 3.67858. 

The unequal distribution of 0’s and 1’s in bn(0.4, 

3.9) clearly influences the distribution and the 

frequency of appearances of binary patterns with 

length L > 1. 

     This is clearly shown at the results obtained for 

the investigation for bit patterns with length L = 2, 

shown in the second row of Table 2. The double-

zero pattern (00) did not appear in bn(0.4, 3.9). 

Practically, the interpretation of this result is that 

there are no two consecutive decreases of  the 

logistic function for r  = 3.9. At a second level, the 

absence of the 00 pattern indicates that all patterns 

of any length L ≥ 2 that include the pattern 00 do 
not appear in bn(0.4, 3.9). This is explicitly shown in 

the rest rows of Table 2, which present the binary 

patterns and their corresponding frequency of 

appearance for length L up to 7. For example, as it 

can be seen in the third row of Table 2 (L = 3) none 

of the binary patterns 000, 001, 100 appears in the 

data set. Furthermore, in that same row, the pattern 

111 is absent too. This means that there are not three 

consecutive increases of the logistic function for r = 

3.9, and that all patterns that include three 

consecutive 1’s ( ⋅⋅⋅111⋅⋅⋅ in general, such as 0111, 
10111101, etc.), are not present in bn(0.4, 3.9). 

 

Table 2 

Binary patterns found in bn(0.4, 3.9).  
                The total number of patterns is 10

6
. 

 

     On the other hand, the absence of two 

consecutive zeros in the data set implies that if the 

last bit of a binary pattern is 0, then this pattern will 

L Patterns Frequency  

1 

 

           0 

          1 

409338 

590662 

2 01 

10               

11 

409338 

409338 

181324 

 

3 

       010               

011               

101               

110 

228014 

181324 

409338 

181324 

 

 

4 

     0101               

0110               

1010               

1011               

1101 

228014 

181324 

228013 

181325 

181324 

 

 

 

5 

   01010               

01011               

01101               

10101             

10110               

11010               

11011 

129175 

 98839 

181324 

228013 

181325 

 98838 

82486 

 

 

 

 

6 

 010101               

010110               

011010               

011011               

101010               

101011               

101101               

110101               

110110 

129175 

 98839 

 98838 

 82486 

129174 

 98839 

181325 

 98838 

 82486 

 

 

 

 

 

 

7 

0101010               

0101011               

0101101               

0110101               

0110110               

1010101               

1010110               

1011010               

1011011               

1101010               

1101011               

1101101 

 75577 

 53598 

 98839 

 98838 

 82486 

129174 

 98839 

 98839 

 82486 

 53597 

 45241 

 82486 
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be followed by an 1. In other words, if the 

terminating bit of a pattern is 0 then it can be safely  

predicted that the next bit to be expected is an 1. 

Therefore the patterns terminating to a 0 do not 

bifurcate, (i.e. they are not followed by either a 0 or 

an 1, but they are followed exclusively by an 1). 

 

Table 3 

Binary patterns found in bn(0.4, 4.0).  
                The total number of patterns is 10

6
. 

 

     Thus, the zero-terminated patterns are perfect 

predictors of the next bit in bn(0.4, 3.9). This also 

stands for the pattern 11. If the pattern 11 was 

bifurcated, then both the patterns 110 and 111 would 

be present in row 3 of Table 2 (which corresponds to 

the patterns with length L = 3 that were found in 

bn(0.4, 3.9). However, as it was previously notified, 

the pattern 111 is absent from that list, therefore nor 

the pattern 11 bifurcates, but is always followed by a 

0. Therefore, the pattern 11 is a perfect predictor as 

well, predicting that the next bit is 0. As a general 

result, all L-bits patterns ( for L ≥ 2 ) terminating to 
11 will be followed by a 0. 

     The next thing that we consider, is that the only 

patterns that bifurcate, (i.e. are followed by either a 

0 or an 1) are these patterns that are terminated 

either to 1 (in the special case of length L = 1) or to 

01 (in the general case of any length L > 1). 

Therefore, we have concluded some rules of pattern 

bifurcation or no bifurcation that can be applied in 

general for every pattern. These rules indicate that 

from the three present patterns with L = 2, (01, 10 

and 11) the only that bifurcates is 01 (resulting to 

010 and 011 to appear), whereas the pattern 10 is not 

bifurcated, but always followed by an 1 (therefore 

only 101 was found in bn(0.4, 3.9)). Also, the pattern 

11 is not bifurcated too, but always followed by a 0 

(therefore only 110 was found in bn(0.4, 3.9)). In a 

similar way, from the four 3-bit patterns present in 

the data set (010, 011, 101, 110), only 101 bifurcates 

(to generate 1010 and 1011), whereas the rest of 

them are not bifurcated (010 terminates to 0 and 

gives only 0101, 011 terminates to 11 and gives only 

0110 and 110 terminates to 0 and gives only 1101 ). 

     A few more words with respect to the frequency 

of appearance of the patterns that can account as 

perfect predictors. The 1-bit length pattern 0 appears 

409338 times in the bn(0.4, 3.9) and as mentioned 

previously, it is a perfect predictor that the following 

bit is an 1. Therefore the number of perfect 

predictors considering binary patterns with length L 

= 1 is 409338/10
6
, approximately 41%. On the other 

hand, considering the 2-bits patterns capable for 

perfect prediction, it is concluded that there are two 

perfect predictors, namely 10 (predicting that 1 

always follows) and 11 (predicting that 0 always 

follows). The frequency of appearance of these two 

patterns (according to second row of Table 2) is 

(409338+181324)/10
6
, approximately 59%. 

     It is noteworthy, that this high percentage of 

appearance of perfect predictors is conserved for any 

higher value of the length L of the binary patterns. 

For example for L = 5 perfect predictors are the 

patterns 01010, 01011, 10110, 11010 and 11011, (all 

of them terminated with a 0 or an 11), with 

L Patterns Frequency  
1 

 

               0 

               1 

333226 

666774 

 

2 

               01 

               10 

               11 

333226 

333225 

333549 

 

 

3 

             010               

011 

               101               

110 

               111 

166863 

166363 

333225 

166363 

167186 

 

 

 

4 

               0101 

               0110 

               0111 

               1010 

               1011 

               1101 

               1110 

               1111 

166863 

 82759 

 83604 

166862 

166363 

166363 

 83604 

 83582 

 

 

 

 

 

 

5 

               01010 

               01011 

               01101 

               01110 

               01111 

               10101 

               10110 

               10111 

               11010 

               11011 

               11101 

               11110 

               11111 

 83761 

 83102 

 82759 

 41955 

  41649 

 166862 

  82759 

  83604 

  83101 

  83262 

  83604 

  41649 

  41933 

 

 

 

 

 

 

 

 

 

6 

 

              010101 

         010110 

        010111 

        011010 

        011011 

        011101 

        011110 

        011111 

        101010 

        101011 

        101101 

        101110 

        101111 

        110101 

        110110 

        110111 

        111010 

        111011 

        111101 

        111110 

        111111 

  83761 

  41301 

 41801 

 41279 

 41480 

 41955 

  20796 

 20853 

 83760 

  83102 

  82759 

  41955 

  41649 

  83101 

  41458 

  41804 

  41822 

  41782 

  41649 

  20853 

  21080 
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frequency of appearance (129175 + 98839 + 

181325 + 98838 + 82486)/10
6
 = 59%. Therefore, 

despite the complexity of bn(0.4, 3.9), in an 

unexpected high number of cases the exact value of 

the next bit can be predicted. 

     Similar, but not identical results are obtained for 

the data set bn(0.4, 4.0). These results are 

summarized in Table 3. As it can be seen in the first 

row of Table 3, the number of 0’s in the data set was 

found to be 333226 (approximately 1/3, or 33.3%) 

and the number of 1’s was 666774 (approximately 

2/3, or 66.7%). 

     Following the above analysis and interpretation 

of the results of Table 3, the main conclusion is that 

also for the case of r = 4.0 there exist perfect 

predictors and prediction rules. As it can be noted in 

the second row of Table 3 (corresponding to length 

L = 2) the pattern 00 is not included in that list. This 

means that any patterns, of any length L, that 

includes two consecutive 0’s are also excluded. 

However, this is the only exclusion rule concerning 

the patterns of Table 3. This is in contrast to the 

results reported in Table 2 (corresponding to r = 

3.9), where an additional exclusion rule was found 

(not only 00, but also 111 was absent).  

     Therefore the (only) prediction rule in case of r = 

4.0, is that the zero-terminating patterns do not 

bifurcate, but they are always followed by an 1. On 

the other hand, the one-terminating patterns always 

bifurcate and therefore are followed by either 0 or 1 

with approximately equal probabilities. 

 

Table 4 
Number of binary patterns appeared in bn(0.4, 4.0) 

for L up to 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     According to these prediction and bifurcation 

rules, the frequency of appearance of perfect 

predictors for a certain length L is determined by the 

number of L-bit patterns that are terminating to a 0, 

which is 333226/10
6
, approximately 33.3%. As in 

both the two previously examined cases (for r = 3.6 

and for r = 3.9), even for r = 4.0, the frequency of 

appearance of perfect predictors is conserved and is 

independent of the value of the length L. 

     As a result of the presence of a single exclusion 

rule that was found in bn(0.4, 4.0), the number of the 

patterns of a certain length L that can be found in the 

binary sequence can be mathematically formulated. 

This is shown in Table 4, which presents the number 

of L-bits patterns that were found in the data set as a 

function of the length L of these patterns. It is easily 

recognized that these numbers correspond to the 

Fibonacci sequence.  

     Thus, if we denote as P(L) the number of patterns 

with length L that were found in the data set, then 

for an arbitrary value of L, P(L) is given by the 

simple Fibonacci recursive formula: 

  

   P(L) = P(L-1) + P(L-2)       for L ≥ 3,       (3) 

   

with  P(1) = 2  and  P(2) = 3. 

 

 

4 Conclusions 
The presence of perfect predictors resulted from the 

presence of binary patterns that do not bifurcate, or 

in other terms from the existence of some binary 

patterns that are always followed by a 0 and some 

other patterns that are always followed by an 1. As it 

was found out, the rules of pattern bifurcation or no 

bifurcation are easily extracted. In the same manner 

easily can be extracted rules of presence or absence 

of the binary patterns, as well as the total number of 

different patterns of a certain length L that can be 

found in a binary data set. Thus, although the high 

average information loss of the logistic function [3], 

(for r = 3.9 the Lyapunov exponent is λ ≅ 0.718, i.e., 
one bit degrades by that much, on every iteration [7, 

8]) there exist conditions (in the form of binary 

patterns) that can be interpreted as perfect predictors 

since they can account for risk-free prediction of the 

next bit. This can be explained considering that there 

exist some pieces of the observed trajectory of the 

logistic system in the phase space that recurrently 

visit subspaces of the chaotic attractor. In these 

subspaces, the trajectory orbits are not widely 

spreading, or, are even contracting [9, 10]. Near 

these particular subspaces of the phase space of the 

system, high predictability appears.  

     It is noteworthy to refer, that the results presented 

above are typical and representative. Identical 

results were obtained in both qualitative and 

quantitative manner for bn(x0, r) binary sequences 

with the same value of parameter r and different 

L       Number of  

    Patterns found 

1 2 

2 3 

3 5 

4 8 

5 13 

6 21 

7 34 

8 55 

9 89 

10 144 

11 233 
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initial value x0. Thus, these results appeared to be 

independent of the initial condition of the system. In 

addition, our results seem to be independent of the 

length of bn(x0, r). The above reported results are in 

good agreement with the ones reported by Packard 

[3], although in that work a different transformation 

was used in order to derive symbolic dynamics (i.e., 

the binary data sets). Furthermore, compared to that 

work, a more detailed analysis is provided here. In 

future work, Genetic Algorithms and Evolutionary 

Computation techniques like the ones discussed in 

[11, 12, 13] will be applied on highly complex 

binary sequences, in order to investigate the 

presence of hidden order and prediction ability. 
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