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Abstract: - The mean residence time is recommended as a useful summarising characteristic for complex phar-
macokinetic systems. In this context, particularly Exponential and WEIBULL lifetime distributions are dis-
cussed.  The classic compartment models of pharmacokinetics are connected with deterministic kinetic equa-
tions. On the other hand, they provide a natural interpretation in a probability theoretical context in terms of a 
residence time random variable. 
    We are analysing the correspondence of solutions of kinetic equations describing compartment models and 
life time distributions. Examples are given that in the nonlinear case such correspondence does not exists gen-
erally. This indicates one must clear in every application case whether the observable concentration-time course 
actually characterizes the residence time of a pharmacon molecule. 
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1  Introduction 
 
Compartment models are used e.g. in pharmacoki-
netics [1] and in urea kinetics [2] to describe the 
time course of the concentrations of the substance 
being in observation. The method is taken from 
chemical reaction kinetics. We can confine our-
selves to the simplest models in the following. 
    The so-called One-Compartment-iv-Model de-
scribes the time course of a substance administered 
rapidly at time zero, t = 0, to a body, which is re-
garded to be a single homogenous compartment. 
The related differential equation is the diffusion 
equation 
d
dt

c t k c tel( ) ( )= −                                                    (1) 

with time t ≥ 0 , elimination constant kel > 0  and 
initial value c c( )0 0= . The unique solution of this 
homogenous linear differential equation with con-
stant coefficient is 
c t c k tel( ) exp( )= −0 .                                                (2) 
    The inhomogenous linear initial value problem, 
the so-called One-Compartment-ev-Model, 
 
d
dt

c t k c t k c k tel i i i( ) ( ) exp( )+ = −0 ,                            (3) 

kel > 0 , ki > 0 , ci
0 0> and initial value c( )0 0= , 

has the unique solution  

c t c kt kti( ) exp( )= −0  ,                                              (4) 
abbreviated c t At at( ) exp( )= − , 
for k k ki el= =: and 

c t
c k

k k
k t k ti i

el i
i el( ) [ exp( ) exp( )]=

−
− − −

0

  ,                 (5) 

abbreviated c t A at bt( ) [ exp( ) exp( )]= − − − , 
for  k ki el≠ . 
The so-called system parameters a, b, A are func-
tions of the model parameters kel > 0 , ki > 0 , ci

0 0> . 
    The Two-compartment model of pharmacokinet-
ics is given by the differential equation system 
d
dt

C t K C t I t( ) ( ) ( )= +                                             (6) 

with the transposed compartments concentration 
functions vector 

[ ]C t c t c t
T

( ) ( ), ( )= 1 2 ,                                               (7) 
the transposed compartments input functions vector 
 

[ ]I t I t I t T( ) ( ), ( )= 1 2                                                  (8) 
 
and the model parameter matrix 
 

K
k k k

k k
=

− +
− +









( )
( )

10 12 21

12 20 21

.                              (9) 

Here the model parameters kij  are the transfer pa-
rameters from compartiment i to compartiment j and 
ki0 the compartiments elimination parameters. For 
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simplicity, we consider I t( ) = 0  and initial condition 

[ ]c
T0 0, . The solutions of this differential equation 

system arise with the known standard methods. 
    There are 16 different Two-compartment models 
depending on whether the model parameters are 
different from zero. Additionally, the solutions of 
the differential equation system require case distinc-
tions. The relations between the model parameters 
and the system parameters, calculable from the data, 
get complicated with that. Therefore the mean resi-
dence time was recommended as a useful summaris-
ing characteristic for complex pharmacokinetic sys-
tems. This is a probability theoretic concept with the 
residence time of a pharmacon molecule as random 
variable. 
    Relations between concentration-time functions 
and residence time distributions are examined in the 
following. 
 
 
2   Compartment models and residence  
     time distributions 
 
Every non-negative continuous real function whose 
integral over ú equals 1 defines a probability distri-
bution. 
 
   Definition 1: Let c t c t a b A B( ) ( , , , , )=  be a function 
that corresponds with one of the observed compart-
ment models, dependent on system parameters a, b, 
A, B, and integratable on ú+. Then  

f t c t
AUCc ( ) ( )

=    with  AUC c t dt= < ∞
∞

∫ ( )
0

             (10) 

denotes the so-called standardized concentration-
time function of c t( ) . Ñ 
 
Proposition 1 
Not every function c t( ) associated with a compart-
ment model can be assigned a standardized func-
tion f tc ( ) . 
Proof: The function c t A at B( ) exp( )= +  is among the 
solutions of a two-compartment model and only lo-
cally integratable. Ñ 
 
    A random variable has to be defined in a suitable 
way in order to be able to theoretically interpret the 
standardized concentration-time-functions of com-
partment models. 
 
Definition 2:  The duration of presence, synony-
mously: residence time, of a pharmacon molecule in 
an organism is regarded to be a random variable X .  

With respect to a compartment model, m te ( ) denotes 
the drug quantity of applied dose DOS eliminated 
from the organism up to time t. The probability dis-
tribution of X  is defined as 

 F t Prob X t
m t
DOSX

e( ) ( )
( )

= < =  ,                             (11) 

the density is denoted by f tX ( ) .  Ñ                             
 
Agreement: Probability distribution and density are 
defined on all ú. Without being expressed, the 
courses of concentration over tome c(t) which are 
brought into relation are therefore thought to be 
extended from ú+ to the whole ú with the value 
zero. The same technical simplifications concern the 
derived probability distributions, the density derived 
from c(t) as well other functions. 
 
Proposition 2 
For a One-Compartment-iv-Model, the residence 
time of a pharmacon molecule is exponentially dis-
tributed. f t f tX c( ) ( )= is true. Ñ        
 
Proposition 3 
The following is true under the assumption 
k ki el≠ for the One-Compartment-ev-Model: 
 
1. The random variable X has the distribution func-
tion 

F t
k k

k k
k t

k
k t

kX
el i

el i

el

el

i

i

( )
exp( ) exp( )

= +
−

−
−

−







1 .        (12) 

2. f t f tX c( ) ( )= is true for the density function. 
3. f tX ( ) is the linear combination of the densities of 
two exponential distributions.  Ñ 
 
Proposition 4 
The following is true under the assumption 
k k ki el= =: for the One-Compartment-ev-Model: 
1. The random variable X is Gamma distributed and 
has the distribution function 
F t kt ktX ( ) ( ) exp( )= − + −1 1 .                                    (13) 
2. The following is true for the density function: 
 f t f t k t ktX c( ) ( ) exp( )= = −2 .    Ñ                         (14)        
 
The proofs of these propositions are straightforward. 
 
    Due to Proposition 1, not every one of the two-
compartment models corresponds with a residence 
time distribution. The stochastic model is meaning-
fully in relation to the one-compartment models. It 
should be stressed that the distribution functions are 
independent from the applied drug quantity DOS 
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and that the densities correspond with the observ-
able time courses of concentration.  
   This is fundamentally based on the qualities of the 
pharmacokinetic model: 
Consider a so-called elimination process of 0-th 
order  
c t k c cel( ) , ( )= − =0 0 .                                            (15) 
The solution only applies to the interval [ , / ]0 0c kel  
where it is not negative. One goes over of the con-
centration-time-course to the mass-time-function by 
introducing the constant distribution volume V. So 
m t Vc t DOS k Vtc el( ) ( )= = − ,                                  (16) 
m t k Vte el( ) = ,            (17) 
F t Vk t DOSX el( ) /=                  and          (18) 
f t Vk DOSX el( ) /=  yield from c t c k tel( ) = −0 .  

The distribution is dependent from DOS. In addi-
tion,  
f t f tX c( ) ( )≠                                                         (19) 

because  
f t k t c k cc el el( ) ( / ) /= −2 1 0 0 .                                 (20) 

 
    A sufficient condition for the coincidence of resi-
dence time density and standardized concentration-
time function gives 
 
Proposition 5 
The residence time X of a molecule in an organism 
is a continuous distributed random variable with 
density f tX ( ) . Elimination of the pharmacon is only 
carried out in the observation compartment. Quan-
tity and concentration are connected by the equation 
m t Vc t( ) ( )= and V is a distribution volume. The eli-
mination can be described by m t k m te el' ( ) ( )= . Here 
kel  is an elimination constant.  
Then the following is true: For every density f tX ( ) , 
a time course of concentration f tc ( ) exists such that  
f t f tX c( ) ( )= .     (21) 

Proof: With regard to the Definition 2,  
f t m t DOSX e( ) ' ( ) /=  is true.  

The relation c t DOS f t VkX el( ) ( ) /=  then follow from 
the assumption m t k m te el' ( ) ( )= . Ñ 
 
 
3   Nonlinear differential equations 
 
Two variants of the one-compartment model are 
looked at. In the two cases time course of drug con-
centration and residence time distribution cannot be 
brought about to connection. 
First, the nonlinear attempt  

d
dt

c t k c tel( ) ( )= − 2 ,  c c( )0 0= ,   (22) 

 
leads to 

c t c
c k tel

( )
( )

=
+

0

0 1
,     (23) 

F t
DOS k tX

el

( )
( )

= −1 1   and 

f t
DOS k

DOS k tX
el

el

( )
( )

=
+1 2 . 

f tc ( )  does not exist because c t( )  , equation (23), is 
only a locally integratable function.  
Second, consider the delay differential equation 
d
dt

c t k c tel( ) ( )= − −τ for real t > 0 ,τ > 0  and kel > 0 . 

The clear attainability of a unique solution for this 
differential equation puts the handicap of a starting 
condition in the form of a steady function g t( ) on 
[ , ]−τ 0 . Let g t G( ) = a constant. The solution is than 
 

c t G
k
j t jel

j
j

j

m

( )
( )

( { }= +
−

− −










=
∑1 1

1
τ .  (24) 

 
It is an oscillating function, [3, p.67]. Negative val-
ues of concentrations do not make sense. 
 
 
4   Conclusions 
 
Associated residence time distributions were de-
rived for concentration-time courses of simple 
pharmacokinetic models. Not every of these models 
corresponds with such a distribution. Such a sto-
chastic description of a pharmacokinetical process 
proves to be interpretable. As executed, time 
courses of concentration do not necessarily define 
residence time distributions.    A sufficient condition 
for the coincidence of residence time density and 
standardized concentration-time function is given. 
Pharmacokinetical literature about this topic is 
found to be vague, e.g. [4,5,6,7].  
    Oppositely, a family of probability distributions is 
the starting point of the mathematical modeling of 
pharmacokinetical processes. For example, [8] stud-
ies Gamma distributed residence times and [9] deals 
with WEIBULL-distributed residence times. Ade-
quate conditions should be formulated in order to 
bring such ideas into connection with observable 
courses of time of concentration. 
    Regardless of these considerations, mean resi-
dence times are widely used in pharmacokinetics as 
you can find in the PubMed database. 
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