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Abstract: - A new strategy to identify the independent dynamics of spatially extended nonlinear networks is 
proposed. Starting from spatial modes theory an index has been defined as the number of relevant spatial modes 
and therefore identifies the system degree of freedom. The proposed methodology is validated by quantifying 
self-synchronization in three pattern-oriented systems: bidimensional Chua’s circuit arrays, Hindmarsh-Rose 
neurons networks and fuzzy oscillators’ lattices. 
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1   Introduction 
When studying simulated and real-world pattern 
oriented nonlinear networks a fundamental problem 
to copy with is the definition of a meaningful 
measure for better characterizing and comparing the 
phenomena. 
According to synergetic theory the emergence of 
patterns in complex systems can be explained by 
considering them as structures of coupled nonlinear 
subsystems that exhibit macroscopic behaviors both 
in time and space [1]. In the following sections 
spatially coherent patterns in extended nonlinear 

networks are investigated by assuming that 
spatio-temporal systems can be described using a few 
dominant modes [1][2]. The fundamental goal of the 
adopted analysis is to identify quantities representing 
the number of collective variables of the whole 
spatio-temporal behavior. In order to identify 
individual spatial modes in spatio-temporal systems 
an approach based on Spatial Independent 
Component (SIC) methodology is proposed. SICs 
recovered from data are assumed as spatial modes. 
Spatial modes strategy is focused on the definition of 
an index σ for evaluating the self-synchronization 
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features of extended complex systems. This index 
represents the number of relevant degrees of freedom 
which describe the temporal evolution of system 
spatial patterns. The proposed methodology is 
described in Section 2. By using various examples of 
spatio-temporal systems, showing emergent 
behaviors, the proposed approach is validated in 
Section 3. In  particular, three case of study are 
reported: the first one focuses on a two-dimensional 
lattice constituted by Chua’s circuits coupled in a 
regular grid; the second one investigates 
synchronization in Hindmarsh-Rose(H-R) 
bidimensional networks; finally, the proposed 
methodology is applied to arrays of coupled fuzzy 
oscillators.  
 

2 Methodology 
According to spatial modes theory, the spatial 
patterns exhibited at generic time t by distributed 
networks can be represented trough a linear 
superposition of a set of basic patterns: the so-called 
modes. Just few spatial modes can be used to model 
the system dynamics decreasing in this way the 
degrees of freedom of the spatio-temporal system. 

Given the time series X ∈ ℜTxN of a spatio-temporal 
system, where T is the number of samples and N the 
number of subsystems, it can be expanded into a set 
of orthonormal components sk each one having a 
corresponding amplitude wk(t): 
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where t=1…T  is the sample index. 
 
 
2.1 Spatial independent component analysis  
Usually, Independent Component Analysis (ICA) is 
used for recovering signals from a set of time 
acquisitions by using a linear approach [2][3] but it 
can also be applied to extract spatial information, that 
is: to identify a set of basic patterns, whose linear 
combination allows representing the spatio-temporal 
dynamics of the whole system. ICA is proposed as a 
method to isolate Spatial Independent Components 
(SICs) that can be assumed as spatial modes. Starting 

from the data matrix X ∈ ℜTxN, and being:  
   X = W ×S              (2) 

where W ∈ ℜTxN  is a weight matrix, the SIC analysis 
allows to recover N spatial modes, given by the 

matrix S ∈ ℜNxN 
.Each spatial mode is statistically 

independent from the others and has a non-Gaussian 

distribution. The matrix S can be evaluated by 

considering the estimated matrix  W
∧

 as follows: 
1W

∧
−= ⋅S X    (3) 

The algorithm to estimate Ŵ is based on the 
estimation of the inverse of the matrix W obtained 
through a recursive algorithm. In order to identify the 
independent dynamics of the system we are 
interested in evaluating the number of spatial modes. 
This number, which can be up to the number of 
subsystems N, can be decreased by selecting only 
those spatial modes with the largest eigenvalues in 
the Singular Value Decomposition (SVD). In real 
data analysis, the highest eigenvalues are associated 
to the spatially coherent dynamics while the smaller 
ones are related to incoherent dynamics. In 
pattern-oriented systems, the highest eigenvalues can 
be associated to the spatial self-synchronized 
dynamics while the smaller ones can be associated to 
the spatially unsynchronized chaotic dynamics. The 
point that shows a gap from the higher to the smaller 
eigenvalues distribution is adopted as the number of 
spatial modes that identify the spatial dynamics. 
 
 
2.2 Index definition 
Starting from the previous considerations, an index σ 
[4] is proposed to identify the number of independent 
dynamics characterizing spatially extended system. 
Let’s consider a generic bidimensional system 
constituted by interconnected units.  Given the matrix 

A ∈ ℜNxT | A=XT, containing in its rows the N signals 
generated by the system subunits, the covariance 

matrix of A is the matrix R ∈ ℜNxN
, R = A·AT. The 

index σ is a function of the eigenvalues of R (that are 
the squares of the singular values of the matrix A).  
Depending on matrix A singular values, three main 
classes of dynamic behavior can be identified: 
•  Spatio-temporal chaos: all the signals are 

uncorrelated; in this case all the singular values 
are non-null and σ = N; 

•  Synchronization: all the signals are identical and 
only one singular value is non-null (σ = 1); in 
this case the rank of the matrix R will be unitary. 

•  Emerging patterns: the units aggregate in 
synchronized clusters whose number is equal to 
the number of spatial modes. Each cluster 
dynamics is identified by the relative spatial 
mode dynamic evolution (1 < σ < N); singular 
values well be both null and non-null (some very 
close to zero). 

When signals are similar but not identical some 
singular values very close to zero will be found. The 
adopted index is thus defined at a certain percentage 
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ξ, as the minimum number m of eigenvalues whose 
sum is greater than a percentage of the trace of R: 

 ( )
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where 
sort

i
λ  is the i-th largest eigenvalue of the 

covariance matrix R. The index range of variation is 
[1 ÷ (ξ·N)+1] corresponding to a situation of total 
synchronization till a completely independent 
dynamics: the index is therefore an important 
parameter giving information about the total number 
of different dynamics present in the system.  
 
 

3   Results 
The methodology proposed has been applied 
investigating the spatio-temporal dynamics of three 
different networks: bidimensional lattices of Chua’s 
circuits, Hindmarsh-Rose (H-R) neurons and fuzzy 
oscillators. The defined index allowed characterizing 
and comparing the networks dynamic behaviors 
towards the system parameter D that represents the 
connection strength. 
 
3.1 Bidimensional lattices of Chua’s circuits 
A regular lattice has been built by connecting N=100 
Chua’s circuits spatially disposed on a 10x10 matrix. 
The single unit equations have been modified 
considering a nearest-neighbor coupling of radius 
one which behavior is described by the following 
equations: 
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where a=-1.27, b=-0.68,α =10 ,β =14.87, C=8 
 
The lattice collective behavior has been investigated 
by varying the coupling intensity D. Fig. 1 shows the 
time series of three generic cells of the lattice, while 
Fig. 2 shows the spatial patterns obtained considering 
four different time instants for increasing values of D 
by using a bidimensional 64-color map. 
Spatio-temporal chaos is observed for weak coupling 

strength (D ∈ [0.1÷1]), as D increases the lattice 
starts exhibiting emerging patterns and for values of 
D higher than 4 self-organization takes place and the 
systems conveys to perfect chaotic synchronization. 

 
Fig.1 x variable time series for increasing values of 
the diffusion coefficient D of three generic circuits. 
 

 
Fig.2. Bidimensional maps of 10x10 Chua’s circuit 
lattices for different values of D. 
 

 
Fig. 3. σ vs. D  in a 10x10 lattice of Chua’s circuits. 
 
The defined index has been then evaluated for 
increasing values of D. Coherently with the previous 
results, a value of σ has been associated to the 
dynamic evolution of the lattice characterizing then 
the system synchronization degree versus the 
coupling D, as is it shown in Fig. 3.The index σ 
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decreases as the coupling strength increases: it is 
maximum for D = 0, when all the circuits are 
disconnected and spatio-temporal chaos is shown. 

For small values of D∈  [0.1÷1], the index value 
becomes smaller and emerging patterns arise. Then, 
for values of D greater than 4, the index σ becomes 
equal to 1 and the perfect chaotic synchronization is 
reached: the system constituted by N=100 cells 
behaves as a whole and only one dynamic evolution 
can be isolated. 
 
 
3.2 Bidimensional network of H-R neurons 
A bidimensional network of N=100 Hindmarsh-Rose 
neurons [5] is built by disposing each unit on a 10x10 
array with radius one. The lattice dynamics is defined 
by equations (6), where C=8 is the number of 
connected cells and i=1÷100, r=0.0021, S=4, 
I=3.281.  
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The state-variables x(t) and y(t) model the fast 
dynamics while z(t) models the slow one; variable I 
represents the synaptic current. The coupling strength 
D weights the coupling between the i-th neuron and 
its neighbors. Model parameters have been set in 
such a way that each isolated neuron is characterized 
by a chaotic behavior, each of them starting from 
random initial conditions. In Figg.4 and 5 the 
membrane potentials x of three coupled neurons and 
the bidimensional maps of the lattice, respectively, 
are displayed for increasing values of D.  

 
Fig.4  x variable time-series for different values of the 
diffusion coefficient D of three generic neurons. 
 
As shown in Fig. 4, the system is characterized by 
two different regimes, slow and fast, requiring a 
different and accurate analysis. In the uncoupled 

case, when D=0, the potentials x(t) evolve 
independently and the maps, displayed for different 
time instants, present isolated spots underlining the 
uncorrelated evolution of each neuron. In case of 

weak couplings, when D ∈  [0.1÷2], the neurons 
evolve with slow periodic dynamic and fast 
unsynchronized spikes; as shown in Fig. 5, 
spatio-temporal patterns arise. The dynamics changes 
for stronger couplings, when D>3: in this case, the 
neurons are chaotically synchronized as shown in 
Figg. 4 and 5. When the perfect synchronization is 
obtained both burst slow activities and spike fast 
regime become synchronized: the 100 neurons 
behave as an individual chaotic one and the 64-color 
maps obtained for fixed time instants have a 
homogeneous color. 
  

 
Fig.5 Bidimensional maps of 10x10 Hindmarsh-Rose 
neuron networks for different values of D. 
 
The spatio-temporal behavior of the H-R lattice has 
been then investigated  trough the proposed index 
σ. Starting from weak couplings, the synchronization 
index is far from 1, as shown in Fig. 6. 

 
Fig.6  σ vs. D in a 10x10 network of H-R neurons. 
 
The σ vs. D curve appears very steep and decreases 
suddenly for higher values of the coupling strength 
D. The network self-organization, quantified 
according to the perfect synchronization of both slow 
and fast regimes, respectively burst and spikes 
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dynamics, is obtained for a diffusion coefficient D 
higher than 3 when σ =1, as reported in Fig. 6. The 
obtained results confirmed the close relationship 
between synchronization performances and adopted 
measure. 
  
 
3.3 Fuzzy oscillator lattice 
     A discrete chaotic fuzzy oscillator is the 
fundamental unit [6]. This fuzzy system is obtained 
through a linguistic description of the stretching and 
folding features in relation to an assigned value of the 
Lyapunov exponent.  The single oscillator is 
described by the two variables x and d that are 
respectively the nominal value of the state and the 
uncertainty on the center value. These variables 
generate the desired evolution and perform the 
stretching and folding features. The discrete fuzzy 
oscillator dynamic could be considered like a two 
dimensional chaotic map with the following 
structure: 
 

( )
( )

1  ( ( ), ( ))

1  ( ( ), ( ))

x k x k d k

d k x k d k
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     (7) 

 
where Ψ and Φ are the fuzzy inference functions 
described through a set of fuzzy rules for each 
variable, as reported in Table 1. The ranges of the 
variables are chosen according to a suitable 
embedding zone performing a main oscillatory 
dynamics summed to an uncertain evolution. The 
design of the fuzzy sets, shown in Fig.7, is obtained 
by fixing a desired Lyapunov exponent l. In Fig. 8, 
the chaotic time series generated by a fuzzy oscillator 
with l=0.1 is shown. 
 

x.small.left/largex.small.right/verylargex.small.right/mediumx.small.right/zerox.large.right

x.large.right/smallx.large.right/verylargex.large.right/mediumx.large.right/zerox.small.right

x.large.left/smallx.large.left/verylargex.large.left/mediumx.large.left/zerox.small.left

x.small.right/largex.small.left/verylargex.small.left/mediumx.small.left/zerox.large.left

verylargelargesmallzerox(k)/d(k)

x.small.left/largex.small.right/verylargex.small.right/mediumx.small.right/zerox.large.right

x.large.right/smallx.large.right/verylargex.large.right/mediumx.large.right/zerox.small.right

x.large.left/smallx.large.left/verylargex.large.left/mediumx.large.left/zerox.small.left

x.small.right/largex.small.left/verylargex.small.left/mediumx.small.left/zerox.large.left

verylargelargesmallzerox(k)/d(k)

Table 1 Rules of the adopted fuzzy inference system. 
 
The lattice configuration is set with a regular 
distribution of the connections with a ring topology 
that means that each unit has 2·C neighbors half on 
the right and half on the left. The equations 
describing the system of N oscillators are 
reformulated in (8) where D represents a suitable 
diffusion coefficient related to a desired information 
exchange. 
 

 
Fig.7 Fuzzy sets of the discrete fuzzy chaotic 
oscillator. 
 

 
Fig.8 Time series of a fuzzy oscillator with Lyapunov 
exponent equal to 0.1. 
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The state value of each fuzzy oscillator depends on its 
own state value in the previous sample time and on 
the contributions coming from the state values of the 
other fuzzy oscillators connected, through a 
bidirectional information exchange. A lattice of 
N=200 discrete fuzzy chaotic oscillators with l= 0.1 
has been considered, with a constant diffusion 
coefficient D=0.005. The single-unit starts its 
evolution from random initial conditions. Fig.9, 
shows the spatio-temporal maps obtained for 
different values of C; in the x-axis is indicated the 
time in sample, while in the y-axis is reported the 
index associated to each cell (i). The state value xi of 
the i-th cell is represented through the colors. By 
varying the number of connections per unit four 
different global dynamics are observed: an initial 
condition characterized by spatio-temporal chaos for 
C=4, two types of synchronization (regular for C=16 
and chaotic for C=46) and a transition phase for 
C=25. In Fig. 10 in order to explain the meaning of 
these different spatio-temporal dynamics the nominal 
value xi of the i-th cell (for i=100 and i =101) is 
displayed. For C=4 each chaotic oscillator evolves 
with its own dynamics (Fig. 10a); for C=16 regular 
oscillations are visible (Fig. 10b); for C=25 the two 
cells time evolutions become almost the same in long 
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time intervals (Fig. 10c); for C=46 a chaotic 
synchronized behavior is obtained (Fig.10d).  

 
Fig.9 Spatio-temporal maps of fuzzy lattices with: 
C=4 (a), C=16 (b), C=25 (c), C=46 (d). 

 
Fig.10 x variable time series of  two cells in fuzzy 
lattices with: C=4 (a), C=16 (b), C=25 (c), C=46 (d). 

 
Fig.11  σ vs. C in regular fuzzy oscillators arrays with 
Lyapunov exponent l=0.1. 
 
The results of this analysis have been validated by 
using the spatial mode approach. The index σ has 
been evaluated for the lattice of N=200 fuzzy 
oscillators with Lyapunov exponent l=0.1 and a 
regular distribution of the connections. The values of 
σ versus C are reported in Fig.11: the presence of two 
zones underlines a transition between two 
synchronization phases of the array dynamics. The 
spatio-temporal behaviors reported in Fig. 9a and 
Fig. 9c show unsynchronized evolutions of the fuzzy 

oscillator arrays. However, visually inspecting the 
two maps, the one in Fig. 9c shows to have a higher 
spatial coherence. This conjecture is quantitatively 
validated by the evaluated index σ. For C=4, σ has the 
maximum value (σ =115) while for C=25 the index 
value is σ =41. 
 
 

4   Conclusion 
The introduction of a synchronization index, allows 
quantifying the self-organization level of an extended 
network and evaluating its behavior versus structural 
parameters. The introduction of this value allows 
quantifying the self-organization level of an extended 
network and evaluating its behavior versus structural 
parameters. Moreover, by identifying the reference 
spatial modes and their corresponding 
time-dependent evolution, the real dynamics of the 
system is separated from noise and the number of its 
independent dynamics is quantified. The proposed 
methodology has been applied to several 
spatio-temporal networks. The suitability of the 
proposed measure in order to quantify the various 
dynamics of pattern-oriented networks has been 
proved. 
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