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Abstract: Rational B-spline neural network (RBNN) is a neural network can be used   for curves and surfaces 
approximation using rational B-spline model. The approximation is solved by learning process of rational B-spline 
neural networks from observation data points. A hybrid genetic based algorithm for optimizing knots, control 
points and weights of RBNN  
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1. Introduction 
 B-spline Neural network (BNN) has 

been applied well to approximate curves and 
surfaces [1]. In that paper,  the authors 
defined a B-spline Neural Network  to 
model, to approximate, to learn a B-spline 
curve. It means that given observation data 
points along a curve, the B-spline Neural 
Network will approximate the given curve 
by a B-spline curve, that is finding the B-
spline control points for the approximate 
curve if knot sequence has been given. 
However, if the curve is too sharp, the fixed 
knot point approach may not produce a good 
approximation curve because when the 
curve change faster more segments should 
be used. In order to achieve this goal, Vien 
and To [1] tried to used the genetic approach 
to obtain the good knot sequence. Thus, B-
spline Neural Network with Genetic learning 
framework proposed in [1] has been a good 
tool to approximate the complex curves and 
also surfaces because it does not only 
finding the good control points and also 
determine the good knot sequence.  They 
also extended their approach to model  
tensor product surfaces, that is Non-Uniform 
B-spline Neural Network (NUBNN) for 
Tensor Product Surfaces. 

  

In geometric modeling, rational B-
spline model also plays a very important 

role because we have an extra way to control 
the shape of curves and surfaces, that are the 
weights [2,4,7,9]. Weight is  the level that 
one control point affects to the local shape 
of the curve  Furthermore, as it has been 
shown by Piegl [8], a non rational model fail 
to model exactly conics meanwhile a 
rational quadratic Bezier curve can do  .  It is 
proposed in this paper a model for Rational 
B-spline Neural Network (RBNN) for 
learning the process of geometric 
approximation for curves and surfaces. 

 The following section briefly 
introduces B-spline curve, rational B-spline 
curve and describes the geometric modeling 
problem. Section 3 describes the topology of 
rational B-spline neural networks and it 
application models to approximate 
geometric objects. Several experiments are 
given in section 4 to illustrate the achievable 
results. A short summary of the paper is 
given in section 5. 
 
2. Fundamentals 

Geometric representation of curve 
and surface by B-spline bases has its roots in 
approximation theory. The theory of B-
spline approximation, primarily, is studied 
by Schoenberg [2], de Boor [12] and Cox 
[13]. In following part a very brief of B-
spline, rational B-spline, BNN. Then, the 
rational B-spline approximation problem 
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and related works are given  
 
2.1 B-spline Curves 

 
A B-Spline curve is a piecewise 

polynomial curve defined by its control 
points and a knot sequence. The domain is 
subdivided by knots and basis functions are 
non-zero on the entire interval.  It is defined 
by: 
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where  S(t) is called a B-spline curve 

di  are the control points of the B-
spline curves  

)(, tN ni  are the ith basic functions of 
degree n defined over a non decreasing knot 
sequence { ti }, they are recursively defined 
as : 
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Knots and a control points only affect some 
local segments and consequently, a segment 
is only affected by some knots and neighbor 
control points.  
 
2.2 Rational B-Spline curves (RBS) 

A RBS curve adds a weight wi to 
control point di  and has an equation of  
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where  wi are the weights, that is the affect 
degree of control points to the shape of the 
curve.  We assume that all the weights are 

nonnegative number. Obviously, it can be 
written as: 
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)(, tR ni are RBS basis functions.  If 

wi = 1 for all i, then )(, tR ni  = )(, tN ni   for 
all i. This shows that the B-spline basis 
functions are special cases of the rational 
basis functions. The rational curve in Rd can 
be considered as a projection of the B-spline 
curve generated by {[widi;wi] } in Rd+1 on 
the hyperplane of Xd+1=1 [14]. 

 
2.3 B-spline Neural Network 
 BNN for function approximation 
was proposed by Brown and Harris [11].  
This networks can be considered as a type of 
feed-forward networks.  A typical structure 
of a B-spline network contains three layers 
which are a input layer, a hidden layer 
consists of B-spline basis functions that are 
defined on the lattice formed by normalising 
the input space, and the output layer that 
sums the weighted outputs from the basis 
functions to produce the network output as 
shown in Fig. 1. 

 

 
 

Figure 1: Typical Structure of B-spline 
Neural Fuzzy Network [11] 
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2.4 BNN for Curves and Surface 
Approximation 

 Vien and To [1] used BNN for 
approximation curves and surfaces. They 
had proposed two models fixed knot BNN 
networks and free knot BNN networks.  

In the fixed knot BSN network, the 
knot sequence has been given, therefore the 
neural network need to learn weight vector, 
that really are control points of geometric 
objects. They used gradient decent algorithm 
for adjusting control points to minimized the 
sum square error. To select a good knot 
sequence for approximate a geometric object 
is difficult, normally we use a little of 
segments for the part of curve that has little 
change. 

Rather than either select manually a 
suitable set of knots or apply directly any 
fixed knot strategies, i.e., uniform knot 
allocation, it would efficiently to 
automatically optimize knot positions for 
modeling. The earliest numerical algorithms 
attempting to solve these problem is due to 
de Boor in [12]. The approach is known as 
free knot spline approach. Similar works has 
also been carried out in [3,5,6] .  

A hybrid genetic algorithm  
proposed in [1] to optimize the parameters 
of BNN networks for geometric modeling 
problem. The algorithm attempts to separate 
linear and nonlinear parameters of the BNN 
for training. 

 
 

Figure 2: RBSNN Model for curve modeling 

Linear weight parameters (control 
points) are identified by using linear least 
square estimator method. This approach 
gives a fast convergence on estimating linear 

weights. Nonlinear knot parameters are 
determined by evolution process of genetic 
algorithms. The process is able of finding 
global optimal solution to nonlinear problem 
without using mathematical model 
restriction.  

Hybrid Genetic Algorithms for free knot 
BSN networks:  

Step1: Initialize a knots population 
with randomly initialized knot 
chromosomes. 
Step2: Evaluate the knot population 
based on fitness function to 
determine the best knot 
chromosome. 
Step3: Estimate the linear 
coefficient weight parameters of 
BNN networks based on current best 
knot chromosome by least square 
estimator method.  
Step4: Compute the mean square 
error of the networks. 
Step5: Perform evolution operators 
on the set of knot chromosomes. 
Step6: Repeat step 2, 3, 4 and 5 
until converge criterion is met.  

3. Rational B-spline Neural 
Networks Model 
  
3.1: RBNN Architecture 
 
The architecture of RBSNN was suggested 
in [1] for approximation improvement is 
given in Fig. 2  This network is the 
generalization of BNN by exploiting the use 
of Rational Basis Function in a hidden layer, 
so the BNN becomes RBNN.   

 
3.2  Fixed Knot  RBNN for Curve 
Approximation 
 

The problem of RBNN for 
approximation is focused to the 
determination of the weight of control 
points.  Under a given set of weights, the 
neural network learns to find control points, 
a straight method is used the gradient decent 
algorithm. Weights are obtained by genetic 
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algorithm [10].  The formal algorithm is 
given as follow: 
 

Step 1 :  Initialize weights for 
control points population with 
randomly generated weight 
chromosomes. 
Step 2 : For each chromosome, 
using gradient decent learning 
method to find the best control 
points and evaluate the Mean Square 
Error (MSE) 
Step 3: Using Genetic algorithm to 
produce the new generation of 
chromosome. Repeat step 2 and 3 
until terminate condition is met 

 
3.2.2 Free Knot RBNN for Curve 
Approximation 
 

For free knot RBNN, we need to 
determine the control points, weights and 
the location of knot sequences at a same 
time.  For control points, we used gradient 
descent method to minimize the MSE, 
meanwhile for weights and knot sequence 
are obtained from genetic approach. The 
algorithm for free knot RBNN is described 
as: 
 

Step  1:  Initialize weight 
chromosomes for control points  
Step  2: Initialize knot sequence 
chromosome 
Step 3: For each weight 
chromosome  
             3.1  For each knot 
chromosome 
                     Using gradient 
decent learning method to find the 
best control points and evaluate the 
sum square error 
              3.2 Using Genetic 
algorithm to produce the new 
generation of knot chromosomes. 
Repeat step 3.1 and 3.2 until 
terminate condition is met 
Step 4: Using genetic algorithm to 
produce the new generation of 
weight chromosomes. Repeat step 2 

to step 4 until the terminate 
condition is met 

4. Experiment Results 
We have tried to make the 

experiments to approximate several kind of 
curves. For each curve we perform both 
Fixed knot RBNN and Free knot RBNN 

4.1  Experiment 1 : Circle Curve 
Approximation 

The circle curve which parametric 
equations x = 3*sint, y = 3*cost, is used to 
approximate. One hundred of points along 
the circle is used to train the network. We 
tried to approximate the curve  with a 
rational cubic B-spline curve.  

First we try to approximate the circle  by 
RBNN with 2 segments, crossover rate 0.9, 
mutation rate 0.1, chromosome 14bits, 
population size 80. For the neural network, 
learning rate 0.02, momentum 0.07, the 
number of epochs is 200. The MSE for the 
best weights via epoch is given in Fig.3. The 
approximated curve obtained from RBNN 
and BNN are given in Fig.4 and Fig.5. It is 
easy to see that RBNN gives a better 
approximation than BNN. The 
approximation of the circle by RBNN with 3 
segments is given in Fig.6 

4.2  Experiment 2 : Parabola Curve 
Approximation 

A parabola curve is also a curve 
from conic section.  This experiment was 
given the parabola parametric equation as: 

 
x = t 2 + t  

                        y = 2t – 1  

Where t ∈ [-10, 10] . The curve was 
replaced with 100 data points.  Degree 2 of 
RBNN with only  one segment is given in 
Fig.7.  

4.3 Experiment 3 : Hyperbola Curve 
Approximation 
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A data curve from conic section in 
this experiment was a hyperbola curve with 
parametric equations given by  

x = 2* cosh(t) 
y = 3 * sinh(t) 

  
 and t � [-2,2]. The curve was replaced with 
200 data points.  The approximation by a 
cubic RBNN with only one segment is given 
in Fig. 8. 
 

 4.4  Experiment 4 : Bicorn Curve 
Approximation 
 

Bicorn curve or Cocked Hat Curve 
can also be considered as a free form curve. 
Its parametric equation in this experiment is 
defined as : 

 
x = sin t  

            y = cos2t (2+ cos t) / 3 + sin2t  
 

Where t � [0,2�]. The curve was replaced 
with 100 data points.  RBSNN with degree 3 
and only 7 basis functions was used. The 
resulting curve after approximation shows in 
Fig.9.   

4.5 Experiment 5 : Archimedean 
Spiral Curve Approximation 
 

Archimedean Spiral has a shape 

which can be considered as a arbitray shape. 
Its parametric equation in this experiment is 
defined as : 

 
x = t n cos(t)  

            y = t n sin (t)  
 

Where t � (0,2]. The curve was replaced 
with 200 data points.  Degree 3 of RBSNN 
with 30 basis functions was utilized. The 
resulting curve after approximation shows in 
Fig.10.  

5. Conclusion 
 
We have developed a framework for 

approximate  geometric object from a set of 
data points by RBNN. We have introduced a 
hybrid genetic based algorithm to training 
the proposed RBNN. The learning algorithm 
attempted automatically to optimize  control 
points by gradient descent learning method, 
meanwhile optimal weights and knot (in free 
knot model) using genetic algorithm. The 
summary table 1 show that free knot RBNN 
model gives a smaller MSE. For regular 
curves as circle, hyperbola free knot RBNN 
improves MSE a little, meanwhile for other 
curves free knot RBNN gives a significantly 
better MSE than fixed knot model. The 
extension of RBNN to approximate surfaces 
are studied in future 

 
 

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp42-50)



-6 -4 -2 0 2 4 6
-4

-2

0

2

4

6

8

10

 
 

Figure 4: The resulting RBNN curve approximation and its control polygon in 
Experiment 1 with two curve segments  
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Figure 5: The resulting non-rational B-spline curve approximation and its control 
polygon in Experiment 1 with  two curve segments 

 
 

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp42-50)



-5 -4 -3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

 
 

Figure 6: The resulting RBS curve approximation and its control polygon in Experiment 
1 with three curve segments. 
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Figure 7:  Approximate a parabol by a single segment of RBNN 
 
 

Table 1: The comparisons between Fixed knot RBNN and Free knot RBNN 
 

 Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 

Name of Curve Circle Parabola Hyperbola Bicorn Archimedean 
Spiral 

No. of Points 100 100 200 100 100 
t (Input Range) [-π,π] [-10,10] [-2,2] [0,2π] (0,20] 
Degree of RBS 3 (cubic) 2 (quadric) 3 (cubic) 3 (cubic) 3 (cubic) 

No. of Basis Functions (control points) 5 3 4 7 30 
No. of Bits for Chromosome 14 14 14 14 14 

Population Sizes 80 50 60 90 80 
No. of generations 80 80 100 60 80 

Crossover rate 0.8 0.8 0.8 0.8 0.8 
Mutation rate 0.4 0.4 0.4 0.4 0.4 

No. of  Training Epochs 400 400 400 400 400 
Learning rate 0.02 0.02 0.02 0.02 0.02 
Momentum 0.7 0.7 0.7 0.7 0.7 

MSE for Fixed knot RBNN 1.051e-3 4.077e-4 4.775e-5 4.319e-5 3.106e-5 
MSE for Free knot  RBNN 9.794e-4 4.445e-7 1.872e-6 3.135e-5 1.359e-5 
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Figure 9 : Original Bicorn curve and approximation curve using RBNN 
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Figure 8 : Approximation a hyperbola using single segment of quadric RBNN 

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp42-50)



 
 
 
 

 

 

 

 

 

 
References 
 
[1]  Vien, T.D and To , T.V., 2003, A learing 
framework of B-spline Neural Networks for 
Geometric Modeling, INtech’03, Chiangmai, 
Thailand 
[2]  Farin, G.E, 1992, Curves and Surfaces for 
Computer Aided Geometric Design: A 
practical Guide, 3rd edition, Academic Press 
[3] Jupp D.L.B,1978, Approximation data by 
splines with free knots. SIAM J. of Numerical 
Analysus, 15, 328-343. 
[4] To TV and Phien HN., 1990, Application of 
Polar Form to Curve Modeling, Proc. 4th 
International Congress and Exhibition 
(Electronic Automation, 1990), New Dehli, 
India, pp 6-15  
[5] Dierckx P., 1993, Curve and Surface fitting 
with splines. New York: Clarendon Press  
 [6] Schwetlick H., T.Schutze,1995, Least 
square approximation by splines with free 
knots, BIT 35, No.3,333-350 
[7] Tet T. and To TV,2004, Curve Matching 

using B-spline  curve, WSCG 04,  West 

Bohemia, Czetch Republic 

[8] Piegl, L.,1989, Modifying the Shape of 

Rational B-spline Curves, Computer Aided 

Design, Vol. 21, pp. 509-518 

[9] Piegl, L.,1991, On NURBS: Survey, IEEE, 

CG&A, Vol. 11, pp 55-71 

[10] Michalewicz Z.,19990, Genetic 

Algorithm+Data Structures= Evolution  
Programs, 3rd edition, , Springer Verlag, Berlin 
[11] Brown, M.,  and Harris, C. 

J.,1994,,Neurofuzzy Adaptive Modeling 
& Control, Prentice-Hall, Engle-wood 
Cliffs, New Jersey 

 
[12] de Boor C. and Rice, J.R, 1968. Least 
squares cubic spline approximation II – 
variable knots. Technical Report CSD TR21, 
Purdue University. 
[13] Cox, M.G., 1972, Curve and Surface 
fitting with splines. New York: Clarendon 
Press, 1993, J. Inst. Math. Appl., Vol 10, pp 134-
149 
[14] Penna ,M.A.and  Patterson,R.R, 1986, 
Projective Geometry and Its Applications to 
Computer  Graphics, Prentice Hall, Englewood 
Cliffs 
 

 

 
- 2 0 2 4 6 8 1 0

- 0 . 5

0

0 . 5

1

 
 
 

Figure 10 : Original Archimedean Spiral curve and approximation curve  using RBNN 
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