
Performance Analysis of Distributed Iterative Linear Solvers

W.M. ZUBEREK and T.D.P. PERERA
Department of Computer Science

Memorial University
St.John’s, Canada A1B 3X5

Abstract: The solution of large, sparse systems of linear equations is an inherent part of many computa-
tional methods in science and engineering. For such systems, iterative methods are often more attractive
than direct methods because of their small (and constant) memory requirements. Also, the performance of
iterative solvers can easily be improved by using distributed systems. A common performance characteristic
of distributed applications is their speedup which is usually defined as the ratio of the execution time of an
application on a single processor to the execution time of the same workload on a

�
–processor system. The

paper estimates the speedup of distributed linear iterative solvers, analyzes the influence of different com-
munication schemes on the speedup, and compares the estimates with the measurements of real distributed
programs.

Key-Words: Distributed computing, speedup, computation-to-communication ratio, sparse systems of linear
equations, iterative methods.

1 Introduction

Advances in many areas of science and engineer-
ing, business and even medicine, depend on ef-
ficient solution of increasingly complex problems
and this, in turn, depends on availability of high-
performance computer systems. There are two ba-
sic ways of increasing the performance of computer
systems; one approach increases the performance
of a uniprocessor system, while the other improves
system’s performance by increasing the number of
processors. The current computer technology fa-
vors multiprocessor systems because they are more
economical [5].

Distributed systems are often considered as less
expensive and more easily available alternatives to
parallel systems [14]. The Beowulf cluster [17]
is probably the most popular example of a sys-
tem composed of (many) standard (or “off-the-
shelf”) components, connected by a communica-
tion medium that exchanges messages among the
components of the system. Different forms of com-
munication medium are used in distributed systems,
from high–speed specialized interconnects to the
internet.

Due to steadily increasing performance of micro-
processors, which, for several decades, has been
doubling every 18 months (the so called Moore’s
Law [10]) and to improving communication band-
width, distributed computing is becoming an attrac-
tive platform for high-performance computing. In-
deed, a recent survey of the most powerful super-
computing systems shows that seven out of 10 most
powerful systems are clusters [11], and the list of
500 most powerful systems includes 208 clusters.
The trend towards cluster computing is expected to
continue.

Although the number of practical applications
of distributed computing is still somewhat limited
[4] and the challenges – in particular, the standard-
ization – are still significant, there are some spec-
tacularly successful examples of large–scale dis-
tributed computing, such as SETI@home [19] or
ClimatePrediction [18] projects, in which hundreds
of thousands and even millions of processors are
performing coordinated computations within the
same project.

In distributed applications, the total workload is
divided among the processors of the system with
an expectation of concurrent execution of the dis-

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp194-199)

tributed tasks. One of the main performance char-
acteristics of a distributed application is its speedup
[16], which is usually defined as the ratio of the
application’s execution time on a single processor,�������

, to the execution time of the same workload
on a system composed of

�
processors,

��� � �
:

� � � �	� �������
��� � ��

The speedup depends upon a number of factors
which include the number of processors and their
performances, the connections between the pro-
cessors, the algorithm used for the distribution of
the workload, etc. Some of these factors may be
difficult to take into account when estimating the
speedup of a distributed application. Therefore, in
many cases, a simplified analysis is used to charac-
terize the steady–state behavior of an application.
This simplified analysis is based on a number of as-
sumptions, such as a uniform distribution of work-
load among the processors, constant communica-
tion times, and so on.

This paper estimates the speedup of iterative
solvers of (large) sparse systems of linear equa-
tions. It shows the speedup of distributed solvers
as a function of the number of processors used and
the “computation–to–communication ratio,” that
relates the performance of processors to the band-
width of the communication medium used. The
speedup estimates are compared with measure-
ments of implemented distributed linear solvers.
Effects of different communication schemes on
the performance of speedup of distributed iterative
solvers are also discussed.

2 Distributed Iterative Solvers

The solution of large, sparse systems of linear equa-
tions is an inherent part of many scientific appli-
cations. Large systems of sparse linear equations
arise in applications of finite element and finite dif-
ference approximations, they are used in analysis
of electronic circuits, in the steady–state solutions
of discrete systems whose behavior is represented
by Markov chains, and many other cases. For large
sparse systems of equations, iterative methods [1],
[7], [9] are more attractive than direct methods be-
cause they are less demanding with respect to mem-
ory and can require significantly less computational

power. The standard Gaussian elimination applied
to a sparse system typically leads to fill–ins, so that
the total number of operations required for a so-
lution of a system of � equations is estimated as
�	
���� [15]; for a system of 1000 equations with the
density of 0.01 (i.e., with the average of 10 nonzero
elements in each equation), the computational re-
quirement of Gaussian elimination is equivalent to
an iterative 1000-step solution of the same system
of equations. For 10,000 equations (with the same
number of nonzero elements per equation), iterative
solution with 1000 steps is computationally more
than 10 times less demanding than the direct Gaus-
sian elimination. Distributed computing can further
reduce the solution time of the iterative approach.
Iterative approach can also be used to improve the
accuracy of a direct solution of large systems of
equations, when cumulative effects of rounding er-
rors can distort the results [6]. Iterative approach
can be very attractive for applications in which a
fast, approximate solution is needed, that can be
obtained in just a few iteration steps. On the other
hand, the convergence of the iterative approach can
be a troublesome issue, and some additional tech-
niques may be needed to improve the convergence
of the iterative process [3].

For distributed processing, the (large number of)
equations is divided into approximately equal sec-
tions allocated to different processors assuming that
all equations have a similar number of nonzero el-
ements and that the processors have similar per-
formance characteristics (if these assumptions are
not valid, a different scheme of load distribution is
needed). After distributing the system of equations
among the processors, the iterative process repeat-
edly executes the following three consecutive steps:

1. the current approximation to the solution is
distributed to all processors,

2. sections of the next approximation to the solu-
tion are calculated (concurrently) by the pro-
cessors,

3. the new approximation is collected from all
processors and the convergence is checked.

Although there are several techniques that can
be used for iterative solution of (sparse) linear sys-
tems, the Gauss-Seidel method [6] has been cho-
sen because it is simple to implement and for some

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp194-199)

applications it converges to the solution regardless
of the initial approximation. The discussion and all
examples used in this paper are based on the Gauss-
Seidel method, however, only minor changes are
needed to adjust the presentation to a different it-
erative method.

In each iteration, the first step typically uses a
broadcast (or multicast) operation, and it can be as-
sumed that its execution time,

���
, does not depend

upon the number of processors (in fact, it usually
depends on this number, but this dependence is ig-
nored here as it is rather inessential). The last step
requires a transfer from each processor to a single
processor which performs the convergence check,
so the transfers are performed sequentially. It is as-
sumed that the total execution time of this step is
equal to

��� ���
, where

�
is the number of proces-

sors and
���

is the communication time of a single
processor. Although

���
depends upon

�
, the de-

pendence is not ver strong [13], and is neglected
here.

Let
���

denote the total (sequential) computation
time of one iteration. The (approximate) time of a
distributed execution of a single iteration is then:

��� � � � �	��
 ���
� �
 ��� ���

For simplicity, it can also be assumed that

��� �
���

, which is an oversimplification, but not very sig-
nificant, as it appears. With this additional assump-
tion, the speedup is:

� � � �	� ���
����� �
 � �
 ��� � �	�

Let � ������� � ������� denote the ratio
���
���	�

, i.e., the
ratio of total (sequential) computation time (per it-
eration) to the communication associated with a
single processor (such a ratio makes sense only
for programs with cyclic behavior). Then the
speedup becomes a function of two variables,

�

and � ������� � ������� :

� � � �	� � ������� � �������� ������� � �������
� �
 �
 �

Fig.1 shows the values of
� � � �

for
� � �"!

 !$#�%

and for � ������� � �������
� �&%�!

 ! �&%'% .

Reasonable speedups (around 5) can be obtained
only when the computation–to–communication ra-
tio is sufficiently high. The best speedup is ob-
tained for a rather small number of processors (5

0
10

20
30

40
50

0

20

40

60

80

100
0

1

2

3

4

5

number of processors

Speedup

comp to comm ratio

sp
ee

du
p

Fig.1. Speedup of distributed iterative solvers.

to 10); for a larger number of processors, the exe-
cution time actually increases as it is dominated by
the communication time.

It should be observed that the simplifying as-
sumptions are not really important because they af-
fect terms which do not have significant influence
on the speedup, especially for large values of

�
.

For larger values of
�

, the communication time
becomes the dominating term in speedup estima-
tion of linear solvers. Therefore the collection of
results (step (3)) can be organized in a hierarchical,
2–level manner, in which first the results of com-
putations are collected in groups of, say, (pro-
cessors, and then the results of groups are com-
bined together. It can be shown that the number
of groups that minimizes the total communication
time is equal to) �

, and then the speedup becomes:

� � � �	� � ������� � �������� ������� � �������
� �
*� �) �
 �

Fig.2 shows the values of
� � � �

for
� � #"!

 !$#�%

and for � ������� � �������
� �&%�!

 ! �&%'% for this modified

approach.
In Fig.2, the relation between the speedup and

the number of processors is quite different than in
Fig.1; better speedup values can be obtained and
the speedup is much less sensitive to the number of
processors. For large values of

�
(i.e.,

�
greater

than 100), further improvement can be obtained by
additional levels of the hierarchical collection of re-
sults.

If the broadcast operation of step (1) is replaced
by a sequence of

�
unicast send operations, the

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp194-199)

0
10

20
30

40
50

0

20

40

60

80

100
0

1

2

3

4

5

6

7

number of processors

Speedup

comp to comm ratio

sp
ee

du
p

Fig.2. Speedup of modified iterative solvers.

speedup is not affected in a significant way. This
is due to a staggered execution phase in which the
consecutive processors start their computation (step
(2)), one after another, right after receiving the cur-
rent approximation to the solution. The return of
results is staggered in a similar way. Consequently,
if the time of sending the approximation to the so-
lution is denoted by

���
, the execution time of one

distributed iteration is:

��� � � � ��������� � � � !���� �	
 ����� �
 ���
	 � � � !���� �
which, for

� ��� ���
, simplifies to:

��� � � � ����� �
 � �
 ��� � ��� !

the same formula as at the beginning of this section
(with

�	� � �	�
).

3 Experimental Results

Practical speedups, obtained for three systems of
sparse linear equations with different sparsity pat-
terns, are shown in Fig.3.

In Fig.3, the density, i.e., the ratio of the num-
ber of nonzero elements to the total number of el-
ements, of systems (1) and (2) is of the order of
0.015, and that of the system (3) is 0.025).

All three systems of equations have banded struc-
ture, with (almost) uniform sparsity of the equa-
tions:

Fig.3. Speedups of distributed iterative solvers.

���������
�

**

**

�����������
�

���������
�

* *
* *
* * *
* * *
* * *
* * *
* * *
* * *
* *
* *

�����������
�

��� � ��� �

���������
�

** *
*** *
*** *
*** *

* *** *
* *** *
* ***
* ***
* ***
* **

�����������
�

��� �
The distribution of the workload among the pro-

cessors assigns the same number of equations to
each processor (except of the “main processor”).

The results were obtained on a cluster of PCs
connected by Ethernet to a central switch, so the
communication times for all pairs of processors
were practically the same. The MPI communica-
tion library [8] was used for setting up the dis-
tributed system and exchanging the messages.

It can be observed that the results in Fig.3 follow
the general outline shown in Fig.1. All three sys-
tems have the same size (so their communication
times are also similar), but the computation times
for system (3) are approximately two times greater
than that of systems (1) and (2) (so � ������� � ������� for

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp194-199)

(3) is approximately two times greater than that for
(1) and (2)), which explains the increased values of
the speedup obtained for system (3).

4 Distributed Convergence

Although it might be expected that the number of
processors,

�
, affects the convergence of the iter-

ative process, apparently this is not the case if the
system is sufficiently large.

Fig.4 shows the (total) number of iterations
needed for distributed iterative solution of systems
of 500 (1), 1500 (2) and 2500 (3) equations with
sparsity pattern (3).

0

50

100

150

200

250

300

5 10 15 20 25 30

nu
m

be
r o

f i
te

ra
tio

ns
 (3

)

number of processors

(1)

(2)
(3)

Fig.4. Numbers of iterations of distributed iterative
solvers for systems of 500 (1), 1500 (2) and 2500 (3)

5–diagonal equations (sparsity pattern (3)).

In Fig.4, the number of required iterations is
practically independent of the number of proces-
sors. Moreover, this number of iterations actually
decreases with increased size of the system of equa-
tions; this can be due to improved overall conver-
gence properties of the iterative process when the
number of equations assigned to each processor in-
creases. Fig.5 shows the dependence between the
size of the system of equations and the number of
iterations needed for its solution for systems with
sparsity pattern (3).

A similar approach can be used to study the ef-
fects of relaxation, preconditioners, and other tech-
niques used for improving the convergence of the
iterative process.

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500 3000

nu
m

be
r o

f i
te

ra
tio

ns

number of equations (pattern 3)

Fig.5. The number of iterations of distributed
iterative solvers as a function of the number

of equations (sparsity pattern (3)).

5 Concluding Remarks

This paper analyzes, in very general terms, the
speedup that can be obtained in distributed itera-
tive solvers of large sparse systems of linear equa-
tions. The paper shows that the straightforward
distribution of equations among the processors of
a distributed system introduces a limitation of the
speedup, and that using more processors may ac-
tually reduce the speedup and increase the solution
time.

The very simple workload distribution (based on
the same numbers of equations assigned to differ-
ent processors) is satisfactory only when the spar-
sity structure is uniform over the set of equations
(as shown in Section 3). For other systems of lin-
ear equations, for example, for systems of equations
with a “margin” (which is characteristic for the so-
lution of Markov chains) or block-diagonal struc-
tures:
���������
�

**

� ���������
�

���������
�

� ���������
�

a different workload distribution is needed, in
which approximately equal numbers of nonzero el-
ements are assigned to processors rather then the
same number of equations, otherwise a significant
imbalance can occur and reduce the performance of
the solver.

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp194-199)

The solution of systems of linear equations is
just one example of applications which may benefit
from distributed environments. Other applications
which are well suited for distributed execution in-
clude:

� Complex modeling and simulation techniques
that increase the accuracy of results by in-
creasing the number of random trials; the trials
can be run concurrently on many processors,
and the results combined to achieve greater
statistical significance.

� Applications that require exhaustive search
through a huge number of results that can be
distributed over the many processors, such as
drug screening [4].

� Simulations of complex systems (such as
VLSI designs) in which the design is parti-
tioned into a number of smaller parts, and
these parts are simulated concurrently on dif-
ferent processors [12].

It is expected that in future applications, tradi-
tional distributed systems will continue to be used
in specialized domains, such as transaction process-
ing for banking applications, in mainstream appli-
cations, however, grid computing is emerging as
the next evolutionary platform for large–scale high–
performance computing [2].

Acknowledgement

The Natural Sciences and Engineering Research
Council of Canada partially supported this research
through grant RGPIN-8222.

References

[1] O. Axelsson, Iterative solution methods;
Cambridge University Press 1994.

[2] F. Berman, G. Fox, T. Hey, Grid computing:
making the global infrastructure a reality; J.
Wiley 2003.

[3] J.J. Dongarra, I.S. Duff, D.C. Sorenson, H.A.
van der Horst, Numerical Linear Algebra for
High-Performance Comp-uters; SIAM 1998.

[4] L. Erlander, “Distributed computing: an intro-
duction”; Extreme Tech, April 4, 2002.

[5] V.K. Garg, Principles of distributed systems;
Kluwer Academic Publ. 1998.

[6] G.H. Golub, C.F. van Loan, Matrix computa-
tions; The Johns Hopkins Univ. Press 1983.

[7] A. Greenbaum, Iterative methods for solving
linear systems (Frontiers in Applied Mathe-
matics 17); SIAM 1997.

[8] W. Gropp, E. Lusk, A. Skjellum, Using
MPI: portable parallel programming with the
message–passing interface (2-nd ed.); MIT
Press 1999.

[9] W. Hackbusch, Iterative solution of large
sparse systems of equations (Applied Math-
ematical Sciences 95); Springer-Verlag 1995.

[10] S. Hamilton, “Taking Moore’s law into the
next century”; IEEE Computer Magazine,
vol.32, no.1, 1999, pp.43-48.

[11] R. Merritt, “Intel, clusters on the rise in ‘Top
500 Supercomputer’ list”; EE Times Online,
November 18, 2003.

[12] R.A. Saleh, K.A. Gallivan, M-C. Chang, I.N.
Hajj, D. Smart, T.N. Trick, Parallel circuit
simulation on supercomputers; Proceedings
of the IEEE vol.77, no.12, 1989, pp.1915-
1931.

[13] M.R. Steed, M.J. Clement, “Performance pre-
diction of PVM programs”; Proc. 10-th Int.
Parallel Processing Symposium (IPPS), 1996,
pp.803-807.

[14] J.A. Stankovic, “Distributed computing”; in
Distributed computing systems, IEEE CS
Press 1994.

[15] H. van der Vorst, “Iterative methods for linear
systems and implementation on parallel com-
puters”; in Iterative methods in scientific com-
puting; R.H. Chan, T.F. Chan, and G.H. Golub
(eds.), Springer-Verlag 19999, pp.1-44.

[16] B. Wilkinson, Computer Architecture – De-
sign and Performance (2-nd ed.); Prentice
Hall 1996.

[17] The home of page of Beowulf clusters is
“www.beowulf.org”,

[18] The home page of ClimatePrediction is
“www.climateprediction.net”.

[19] The home page of the SETI@home project is
“setiathome.ssl.berkeley.edu”.

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp194-199)

