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Abstract: Classical results on the surjectivity and injectivity of parallel maps are shown to be extendible to the
cases with non-Euclidean cell spaces of particular types. Also shown are obstructions to extendibility, which may
shed light on the nature of classical results such as the Garden-of-Eden theorem.
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1 Introduction

A cellular automaton is a network of identical, uni-
formly interconnected and synchronously clocked fi-
nite state machines. Cellular automata provide sim-
ple and powerful models for parallel computation and
natural phenomena, which interests researchers from
computer science, biology, physics, and other mathe-
matical science fields.

The network topology of a cellular automaton is
usually assumed to be a lattice in Euclideann-space.
This is considered to be enough since most applica-
tions in the above mentioned fields seem to fit in this
setting. However, when we study crystal growth or
physical phenomena in a curved surface/space, we are
naturally led to the study of cellular automata with
other network topologies such as fractals and Cay-
ley graphs, which we will call non-Euclidean cellular
automata. At present, attractive applications are rare,
which confines the study of non-Euclidean cellular au-
tomata to a limited circle of theoretical researchers.

Even in this situation, some of the rich classi-
cal Euclidean results are shown to hold in the non-
Euclidean framework, which may help to attract re-
searchers’ attention. One example is the extension of
theGarden-of-Eden(GOE) theorem.

The classical GOE theorem is emerged from the
problem of self-reproducing machines [1, 2, 3]. It
claims that the existence of mutually erasable patterns
is equivalent to the existence of a GOE pattern. A
GOE pattern is a local configuration which cannot be
reproduced in any environments. If a configuration
contains a copy of a GOE pattern, the configuration
can not be reproduced. Therefore, aself-reproducing
configuration must not contain any copy of a GOE
pattern.

In 1993, Machı̀ and Mignosi proved the GOE the-
orem for cellular automata on Cayley graphs of non-
exponential growth [4]. This was the first nontrivial
non-Euclidean result. Since many important classical
results rely on the GOE theorem, the extended GOE
theorem plays an important role for the development
of non-Euclidean theory.

Aside from Machı̀ and Mignosi’ success, the au-
thor took a different approach. Restricting the cellular
spaces to the class of Heisenberg groups, explicit con-
struction of an anisotropic Moore-Myhill tiling was
obtained [5], which proved to be effective in the non-
Euclidean extension.

Based on these earlier results, the author extended
the following classical theories:

◦ Sato and Honda’s dynamical theory [6],

◦ Maruoka and Kimura’s theory of weak and strong
properties [7],

◦ Ito, Osato, and Nasu’s theory of linear cellular au-
tomata [8].

Unfortunately, the results in these cited papers
have been presented in diverse styles with their own
particular notation. So, it is worthwhile to provide a
unified exposition of these contributions.

Lengthy technical proofs are omitted, which are
given in each of the cited papers.

The rest of this paper is organized as follows.
Section 2 gives basic definitions. Sections 3–5 de-
scribe the author’s contributions to the non-Euclidean
cellular automata theory. Concluding remarks and ref-
erences are given in the final section.
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2 Cellular Automata on Cayley
Graphs

This section gives definitions, fixes notation, and pro-
vides basic facts.

Definition 1. Let G be a group. TheCayley graph of
G with respect to a subset N of Gis a directed pseu-
dograph with vertex setG and edge setE, where

E = {(g1,g2) ∈ G×G|g1 = g2h for h∈ N}.

This graph is denoted byΓ(G,N).

Remark 2. The unite of G is allowed to be included
in N, namely loops are allowed inΓ(G,N). Some
authors adopt different definitions in whichN must
be a set of generators ofG and must not containe.
However, the above form is adequate for our pur-
pose. In what follows, we say simply “graph” instead
of “directed pseudograph.” In the following exam-
ples, though Cayley graphs are directed, they are al-
ways drawn as undirected graphs by identifying edges
(g1,g2) and (g2,g1) and omitting loops. This is to
avoid unnecessary complexity in the figures.

Example 3. Let G = Z ×Z be the direct product of
the infinite cyclic groupZ with itself, or in other
words, 2-dimensional Euclidean lattice. LetN be the
set{(0,0),(0,1),(1,0),(−1,0),(0,−1)} ⊂ G. This is
a cell space with the so calledMoore’s neighborhood.
See Figure 1(a).

Example 4. Let G be as above and letN be the set
{(0,0),(0,±1),(±1,0),(±1,±1)} ⊂ G. This is a cell
space with the so calledvon Neumann’s neighbor-
hood. See Figure 1(b).

(a) Moore (b) Von Neumann

Figure 1: Choice ofN

Let us see other examples of hyperbolic nature.

Example 5. Let G be the free group with two gener-
atorsa andb. We takeN = {a,b,a−1,b−1}. In this
case, we obtain a fractal image as in Figure 2. For
clear view it contains only five level recursive con-
structions.

Figure 2: A Cayley graph of a free group

Example 6. Let G be the Fuchsian group with the
presentation

〈a1,b1, . . . ,an,bn |a1b1a−1
1 b−1

1 · · ·anbna−1
n b−1

n = e〉,

wheren > 1 is an integer ande denotes the identity
element ofG. We take

N = {a1,a
−1
1 , . . . ,an,a

−1
n ,b1,b

−1
1 , . . . ,bn,b

−1
n }.

See Figure 3 withn = 2. Notice that there are circuits
in the graph. The hashed area is to indicate the exis-
tence of a circuit.

Figure 3: A Cayley graph of a Fuchsian group

So far no conditions were imposed onN. How-
ever, to attain meaningful results, we assume through-
out this paper thatG is finitely generated and thatN
includeseand generatesG.
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Next, we define cellular automata on groups or
cellular automata on Cayley graphs. We will use these
two terms interchangeably.

Definition 7. Let G be a finitely generated group. Let
N be a finite subset ofG that generatesG. Let Q be
a finite set called the set ofstates. A local mapwith
support Nis a mapσ : QN → Q. A mapx : G → Q
is called aconfiguration. Let C denote the set of all
configurations, that is,QG, with the product topology.
By Tichonov’s theorem, this space is compact. The
shift sg induced byg∈ G is a mapC→C such that for
anyx∈C,

[sg(x)](h) = x(g−1h) for all h∈ G.

The parallel map Tσ induced byσ and N is a map
C→C such that

(Tσ (x))(g) = σ(s−1
g (x)|N) for all x∈C, g∈ G,

wheres−1
g (x)|N denotes the restriction ofs−1

g (x) to N.
The 4-tuple(G,Q,N,σ) is called acellular automa-
ton. The pair(C,Tσ ) forms a discrete dynamical sys-
tem and is also called a cellular automaton.

Definition 8. Let A be any subset ofG. An element
of QA, that is, a mapA→ Q, is called apattern over
A.

We sometimes assume the existence of thequies-
cent state0, that is,σ(0, . . . ,0) = 0.

Definition 9. The supportof x ∈ C is the set of all
g ∈ G with x(g) 6= 0, and denoted bysupp(x). If
|supp(x)| < ∞, thenx is called afinite configuration,
where|A| denotes the number of elements of a setA.
The set of all finite configurations is denoted byCF .
We denote bŷTσ the restrictionTσ |CF : CF →CF .

We define group theoretical properties.

Definition 10. A group G is said to beresidually fi-
nite if for any g ∈ G, there is a normal subgroup of
finite index which does not containg. A group G
is said to be aunique productgroup if, for any non-
empty finite subsetsA andB of G, there exists an el-
ementg ∈ G that has a unique representation in the
form g = ab with a∈ A andb∈ B.

To define the GOE property, we must introduce
the notions of mutually erasable patterns and GOE
patterns. From now on we assume that the supportN
of a local mapσ always containse, and consequently
that N2 = NN ⊃ N. This assumption does not affect
the generality of the argument since the support of a
local map can always be extended to a larger set in a
trivial way.

Definition 11. Let A andB are subsets ofG such that
AN⊆ B. We defineTσ ,B,A : QB → QA as follows. Let
x ∈ QB be any pattern overB. We can findx∞ ∈ QG

such thatx∞|B = x. We putTσ ,B,A(x) = Tσ (x∞)|A.

Clearly, this is well-defined.

Definition 12. Let σ be a local map andN be its sup-
port. LetA be a finite subset ofG. Two patternsx and
y in QAN2

are said to bemutually erasable(overAN2)
if

x|AN2−A = y|AN2−A, x|A 6= y|A, and

Tσ ,AN2,AN(x) = Tσ ,AN2,AN(y).

Tσ is callederasing if there exist mutually erasable
patterns.

Notice that the existence of mutually erasable pat-
terns implies thatTσ is not injective. Notice also that,
if x andy are mutually erasable overAN2, so are their
translationssg(x) andsg(y) overgAN2 for anyg∈ G.

Definition 13. A group G is said to have theGOE
property if the condition ”for any parallel mapTσ , it
is surjective if and only if it is not erasing” is satisfied.

Machı̀ and Mignosi’s result is stated as follows:

Theorem (Mach̀ı and Mignosi [4]). If G is a group
of non-exponential growth, then it has the GOE prop-
erty.

The proof was conducted by counting the num-
ber of patterns over a finite set and finding inequali-
ties that lead to contradictions when the finite set is
taken large enough. The arguments in the proof are
essentially the same as in Moore and Myhill’s proof.
However, in the non-Euclidean case the counting pro-
cedure is not straightforward.

If we assume the existence of the quiescent state,
we obtain an alternative form of the GOE theorem:

Theorem (With a quiescent state[4]).Let G be a
group of non-exponential growth.̂Tσ is injective if
and only if Tσ is surjective.

3 Periods, Poisson Stability, Injectiv-
ity, and Surjectivity

This section describes a non-Euclidean extension of
Sato and Honda’s dynamical theory. To describe the
problem, we must to add some more definitions.

The notion of period is introduced as follows.
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Definition 14. Let x be a configuration. Theperiod
of x, denoted byω(x), is defined as the stabilizer ofx,
that is,

ω(x) = {h∈ G|sh(x) = x}.

Let A ⊂ G be a complete set of right coset rep-
resentatives ofω(x)\G. We sometimes call it afun-
damental transversalof ω(x). Any elementg∈ G is
uniquely expressed asha with h∈ ω(x), a∈ A. With
this decomposition, we havex(g) = x(ha) = x(a).

If A is a subgroup ofB, we writeB ≥ A. If A is
a proper subgroup ofB, that is,A 6= B andB≥ A, we
write B > A. The following simple lemma is a key to
the subsequent discussions.

Lemma 15. Let Tσ be a parallel map. Then,
ω(Tσ (x)) ≥ ω(x).

Definition 16. If the periodω(x) of a configuration
x∈C is of finite index, that is, if|ω(x)\G| < ∞, then
x is called acofinite configuration.

Let CP denote the set of all cofinite configura-
tions. From Lemma 15, we know that the spaceCP
is invariant under parallel maps.

Definition 17. Let M be anTσ -invariant subspace of
C. A parallel mapTσ is said to beperiod preserving
on M if ω(Tσ (x)) = ω(x) for all x∈ M. In particular,
if M =C, a parallel mapTσ is simply said to beperiod
preserving.

The lemma concerning the density of cofinite
configurations is repeatedly used at crucial steps in the
proofs of main results.

Lemma 18 (The density lemma).If G is residually
finite, then CP is dense in C.

Next, we introduce the notion of Poisson stability
and its variants.

Definition 19. Let Tσ be a parallel map. A configura-
tion x∈C is said to bePoisson stablewith respect to
Tσ if there exists a sequence of integersn1 < n2 < · · ·
such that

lim
i→∞

(Tσ )ni (x) = x.

Let M be a subset ofC. A parallel mapTσ is said to
be M Poisson stableif every x ∈ M is Poisson stable
with respect toTσ .

Definition 20. A configuration x ∈ C is said to be
strongly Poisson stablewith respect toTσ if there ex-
ists a nonnegative integernx such that(Tσ )nx(x) = x,
wherenx depends onx. A parallel mapTσ is said to
beM strongly Poisson stableif everyx∈M is strongly
Poisson stable with respect toTσ .

Definition 21. Let M ⊂C be invariant under a paral-
lel mapTσ . The parallel mapTσ is said to beinjective
on M if the restriction ofTσ : M → M is injective. The
parallel mapTσ is said to besurjective on Mif the re-
striction ofTσ : M → M is surjective. For more details
on Poisson stability, see [9].

The notion of order is defined as follows.

Definition 22. A parallel mapTσ is said to havefi-
nite order if there exists a positive integern such that
(Tσ )n = I , whereI denotes the identity map. Theor-
der of Tσ is defined as the minimum of such positive
integers. LetM ⊆ C be an invariant subspace ofTσ .
A parallel mapTσ is said to havefinite order on Mif
(Tσ )n|M = I |M for some positive integern.

Now we can state Sato and Honda’s result [10].

Theorem (Sato and Honda).Let G= Z
d. The fol-

lowing five conditions are arranged in the order of
strength, that is,(i) implies (ii) , (ii) implies(iii) , and
so on. In(iii) , all the subitems are equivalent condi-
tions.

(i) injective on C.
(ii) period preserving on C.
(iii) (a) strongly CP-Poisson stable

(b) CP-Poisson stable
(c) injective on C
(d) injective on CP
(e) finite order on CF
(f) finite order on CP

(iv) surjective and period preserving on CP
(v) surjective on C

A non-Euclidean extension of this theorem is not
straightforward since Euclidean theory uses the GOE
theorem at crucial steps which does not hold in gen-
eral for non-Euclidean cellular automata. Moreover,
various periodic constructions in Sato and Honda’s
work turned out to be valid only when the underlying
group has residual finiteness. The author showed that
these two conditions on groups make non-Euclidean
extensions of Sato and Honda’s theorem possible [6].
Periodic constructions for non-Euclidean cellular au-
tomata are based on the notion of period that has been
emerged from [11].

The following theorem is obtained as an exten-
sion in which the cell spaceZd is replaced by a group
G.

Theorem 23 (Yukita). Let G be a finitely generated
group. For any parallel map Tσ , we have the follow-
ing.

(i) Injective on C=⇒ Period preserving on C.
(ii) If G has the GOE property and is residually fi-

nite,
Period preserving on C=⇒ Injective on CP.
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(iii) The following four conditions are equivalent.

(a) strongly CP-Poisson stable
(b) CP-Poisson stable
(c) injective on CP
(d) surjective and period preserving on CP

(iv) If G be residually finite,
Surjective on CP =⇒ Surjective on C.

(v) If G has the GOE property and is residually fi-
nite.
Period preserving on CP =⇒ Surjective on C.

For the proof, see [6], where Lemmas 15 and 18
are used at crucial steps. Figure 4 summarizes The-
orem 23 , where thick arrows mean implications. A
thick arrow labeled with “RF”, “GOE”, or “GOE +
RF” means an implication under the condition that the
group is residually finite, that the group has the GOE
property, or that the group has the GOE property and
is residually finite, respectively.

injective on C

period preserving onC

strongly
CP Poisson stable

CP Poisson stable

injective on CP

period preserving onsurjective on CP CP

surjective on C

and

GOE + RF

*

**

finite order on

CPfinite order on

C

CFfinite order on

RF

GOE + RFRF

Figure 4: Properties ofTσ .

Remark 24. Let G be an infinite cyclic group. Then
the diagram in Figure 4 collapses to a simpler one. It
is known that injectivity onC is equivalent to injec-
tivity on CP and that surjectivity onC is equivalent
to surjectivity onCP [10, Figure 2 and the proof of
Prop.3.1 (2)]. Therefore, thin arrows in Figure 4 also
hold in this case.

Remark 25. There exists a parallel map that is sur-
jective onC but not injective onC. This gives the
non-implication in Figure 4 depicted by the crossed
arrow labeled with “*.”

Remark 26. D. E. Muller’s example in [12, p. 131]
establishes non-implications in Figure 4 depicted by
the crossed arrow labeled with “**.”

4 Strong and Weak Properties
Maruoka and Kimura introduced variants of the no-
tions of injectivity and surjectivity — the notions
of weak injectivity/surjectivity and strong injectiv-
ity/surjectivity — and obtained results concerning the
hierarchy among those properties [13, 14, 15], which
we will call Maruoka-Kimura’s hierarchy, or theM-K
hierarchy for short. We will also use the same term
to refer to the non-Euclidean extensions of the M-K
hierarchy.

An equivalence relation≍ in C is defined as fol-
lows.

Definition 27. Two configurationsx andy are said to
beasymptotically equivalentif x(g) = y(g) for all but
a finite number ofg∈ G. We writex≍ y whenx and
y are asymptotically equivalent.

Cx denotes the equivalence class of≍ that con-
tainsx. The equivalence classCx may be seen as the
set of configurations with a given asymptotic bound-
ary condition at “infinity.” C/≍ denotes the quotient
space, that is, the set of all asymptotic equivalence
classes. For anyx≍ y, we haveTσ (x) ≍ Tσ (y). This
means thatTσ mapsCx into CTσ (x) for anyx∈C. We
denote byTσ ,x the mapTσ |Cx : Cx →CTσ (x). Obviously
we have the quotient mapTσ/≍ : C/≍→C/≍.

The following lemma is obvious:

Lemma 28. For each x∈C, Cx is dense in C.

Definition 29. A parallel mapTσ is said to beweakly
injective if Tσ ,x is injective for somex ∈ C, and
strongly injectiveif Tσ ,x is injective for allx ∈ C. A
parallel mapTσ is said to beweakly surjectiveif Tσ ,x
is surjective for somex ∈ C, andstrongly surjective
if Tσ ,x is surjective for allx ∈ C. A parallel mapTσ
is said to beresidually injectiveif no two asymptot-
ically non-equivalent configurations have asymptoti-
cally equivalent successors. A parallel mapTσ is said
to be residually surjectiveif any configurationx has
an asymptotically equivalent configuration that has a
predecessor.

The termstotally injective/surjectiveare meant
for surjectivity and injectivity onC.
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Maruoka and Kimura’s result shows that rela-
tions among properties of injectivity, surjectivity, their
strong and weak versions form a hierarchical struc-
ture:

Theorem (Maruoka and Kimura). Let G= Z
d. In

each of the following(i) and (iii) , all the conditions
are equivalent. Further, conditions(i) implies(ii) , and
(ii) implies(iii) .

(i) (a) residually injective
(b) totally injective
(c) strongly surjective

(ii) weakly surjective
(iii) (a) strongly injective

(b) weakly injective
(c) totally surjective
(d) residually surjective

Attempts at non-Euclidean extensions must face
the following problem. Maruoka and Kimura’s dis-
cussions depend heavily on the notions ofbalanced-
nessandhardnessand the following facts. Surjectiv-
ity and injectivity of parallel maps are characterized
as: For any parallel map,

(i) surjective⇐⇒ balanced.
(ii) injective ⇐⇒ hard.
Neither balancedness, hardness, nor these charac-
terizations work well for non-Euclidean cellular au-
tomata. Therefore, the author had to seek other ap-
proaches for a non-Euclidean extension and eventu-
ally obtained several versions of modified hierarchies
in [7], where various conditions are imposed in turn
on the groups that generate the tessellation. The con-
ditions considered were theGOE property, residual
finiteness, and their combination.

The following theorem is obtained as an exten-
sion in which the cell spaceZd is replaced by a group
G, where the condition on groups is taken the most
general.

Theorem 30 (Yukita). Let G be a finitely generated
infinite group, and let Tσ is a parallel map. The fol-
lowing equivalences or implications hold for Tσ .

(i) Totally injective=⇒ Strongly(weakly) injective.
(ii) Strongly injective⇐⇒ Weakly injective.
(iii) Strongly surjective=⇒ Weakly surjective.
(iv) Weakly surjective=⇒ Totally surjective.
(v) Totally surjective=⇒ Residually surjective.

The most strict condition on groups considered is
“GOE + Residual Finiteness.” Under this condition
we can restore nearly all of the M-K hierarchy.

Theorem 31 (Yukita). Assume that G has the GOE
property and is residually finite. For any local mapσ ,
relations among properties of Tσ are summarized as
in Figure 5.

For the proofs, see [7].

totally
injective

residually
injective

strongly
surjective

weakly
surjective

strongly
injective

weakly
injective

totally
surjective

residually
injective

Figure 5: The M-K hierarchy with GOE and residual
finiteness

5 Arithmetic Properties of Linear
Cellular Automata

In this section, we focus on linear cellular automata.
The existence of the quiescent state is automatically
guaranteed. Thequiescent configuration, a configura-
tion having the quiescent state 0 at every cell, is also
denoted by 0.

A concise algebraic notation for linear cellular au-
tomata is given as follows. LetG be a group. We
consider a formal sumx = ∑g∈Gxgg, wherexg ∈ Zm.
Zm[[G]] denotes the space of all such formal sums.
The obvious addition operation is defined byx+ y =
∑g∈G(xg + yg)g for x = ∑g∈G xgg and y = ∑g∈G ygg.
Thesupportof x∈ Zm[[G]] is the set of allg∈ G with
xg 6= 0. Zm[G] denotes the space of all formal sums
x ∈ Zm[[G]] with |supp(x)| < ∞. Clearly, Zm[G] is
a submodule ofZm[[G]] and has an extra ring struc-
ture where multiplication is the convolution product
defined byx ∗ y = ∑g∈G(∑ab=g xayb)g. Notice that
∑ab=gxayb is a finite sum, and hence the convolu-
tion operation is well-defined inZm[G]. Given any
x ∈ Zm[[G]] andy ∈ Zm[G] the convolutionx∗ y and
y∗x are also well-defined.

Zm, Zm[[G]], andZm[G] are regarded as the set of
states, the space of configurations, and the space of
finite configurations, respectively. Givenσ ∈ Zm[G]
with supp(σ) = N, the mapTσ : Zm[[G]] → Zm[[G]] is
defined byTσ (x) = x∗σ for all x ∈ Zm[[G]]. We can
see that thisσ plays the role of a local map. The map
T̂σ : Zm[G] → Zm[G] is defined byT̂σ (x) = x∗σ for
all x ∈ Zm[G]. The dynamical system(Zm[[G]],Tσ )
is a linear cellular automaton overZm. The shift
su : Zm[[G]] → Zm[[G]] induced byu ∈ G is given by
su(x) = u∗x.

LetSdenote the set of all coefficientsai appearing
in the specification ofσ . Let Spec(m) = {p1, . . . , ps}
be the set of all prime factors ofm. This set is parti-
tioned asSpec(m) = Wm,S∪P(1)

m,S∪ ·· · ∪P(n)
m,S∪Qm,S,

where each set is determined as follows.Wm,S is the
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set of prime factors ofm that divide all ofa1, . . . ,an.
P(i)

m,S is the set of prime factors ofm that do not di-
vide ai but divide all other coefficients.Qm,S is the set
of prime factors ofm that do not divide at least two
coefficientsai ,a j (i 6= j).

Ito, Osato, and Nasu obtained the following two
theorems that claim that injectivity and surjectivity
of parallel maps of linear cellular automata are com-
pletely determined by the corresponding local rules
[16]. Further studies on this track were conducted
by Aso and Honda [17] and recently by Manzini and
Margara [18, 19].

Theorem (Ito, Osato, and Nasu).Let G= Z
d. The

following three properties are equivalent.
(i) T̂σ is injective.

(ii) Tσ is surjective.
(iii) Wm,S = /0.
Theorem (Ito, Osato, and Nasu).Let G= Z

d. The
following three properties are equivalent.

(i) Tσ is injective.
(ii) T̂σ is surjective.
(iii) Wm,S = Qm,S = /0.

A non-Euclidean extension must face the diffi-
culty caused by the absence of commutativity. Ito-
Osato-Nasu and Aso-Honda’s arguments heavily de-
pend on the algebraic nature of the groupZ

d or
Abelian groups. The author examined how an at-
tempt of non-Euclidean extension fails for various
groups and obtained a sufficient condition on groups
that allows Ito-Osato-Nasu type theorems [8]. The
above result on injectivity and surjectivity is derived
as a corollary of the author’s result. In addition, the
new proofs clarify the algebraic nature of original
Ito-Osato-Nasu’s theorems, which was only implic-
itly described in their paper. The proofs in [8] utilize
properties of unique product groups and Machı̀ and
Mignosi’s GOE theorem.

Theorem 32 (Yukita). Let G be a unique product
group with a finite set of generators N and have the
GOE property. The following three properties are
equivalent.

(i) T̂σ is injective.
(ii) Tσ is surjective.
(iii) Wm,S = /0.
Theorem 33 (Yukita). Let G be a unique product
group with a finite set of generators N and have the
GOE property. The following three properties are
equivalent.

(i) Tσ is injective.
(ii) T̂σ is surjective.
(iii) Wm,S = Qm,S = /0.

For the proofs, see [8].

Remark 34. Since any torsion free nilpotent group is
known to be a unique product group, in particular, so
is Z

d.

6 Conclusion
Problems of the GOE patterns, dynamical properties,
asymptotic boundary conditions, and arithmetic prop-
erties of automata are studied in the non-Euclidean
cell spaces. Difference between Euclidean and non-
Euclidean is characterized by the properties of groups
such as GOE, residual finiteness, and the unique prod-
uct properties.

Future work includes investigating other dynam-
ical properties or phenomena such as ergodicity, at-
tractors, and topological classification.
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