
Evolved Multi-resolution Transforms for Optimized Image Compression 
and Reconstruction under Quantization 

 
FRANK W. MOORE 

Mathematical Sciences Department 
University of Alaska Anchorage 

CAS 154, 3211 Providence Dr., Anchorage, AK  99508 
USA 

 
 

 
Abstract: - State-of-the-art image compression and reconstruction techniques utilize wavelets. Recently published 
research demonstrated that a genetic algorithm (GA) is capable of evolving non-wavelet transforms that 
consistently outperform wavelets when applied to a broad class of images under conditions subject to quantization 
error. This paper describes new results that build upon previous research by demonstrating that a GA can evolve a 
single set of coefficients describing a matched forward and inverse transform pair that can be used at each level of a 
multi-resolution analysis (MRA) transform to simultaneously minimize the compressed file size (FS) and the 
squared error (SE) in the reconstructed file. Test results indicate that the benefits of using evolved transforms 
instead of wavelets increases in proportion to quantization level. Furthermore, coefficients evolved against a single 
representative training image generalize to effectively reduce SE for a broad class of reconstructed images. 
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1 Introduction 
Since the late 1980s, engineers, scientists, and 
mathematicians have used wavelets [2] to solve a 
wide variety of difficult problems, including 
fingerprint compression, signal denoising, and 
medical image processing. Recent adoption of the 
Joint Photographic Experts Group’s JPEG2000 
standard [7] has established wavelets as the principal 
methodology for image compression and 
reconstruction. Wavelets may be described by four 
sets of coefficients: 
1. h1 is the set of wavelet numbers for the (forward) 

discrete wavelet transform (DWT). 
2. g1 is the set of scaling numbers for the DWT. 
3. h2 is the set of wavelet numbers for the inverse 

DWT (DWT-1). 
4. g2 is the set of scaling numbers for the DWT-1. 
For the Daubechies-4 (D4) wavelet, these sets consist 
of the following floating-point coefficients: 

h1 = {-0.1294, 0.2241, 0.8365, 0.4829} 
g1 = {-0.4830, 0.8365, -0.2241, -0.1294} 
h2 = {0.4830, 0.8365, 0.2241, -0.1294} 
g2 = {-0.1294, -0.2241, 0.8365, -0.4830} 

A two-dimensional (2D) DWT of a discrete input 
image f with M rows and N columns is computed by 
first applying the one-dimensional (1D) subband 

transform defined by the coefficients from sets h1 
and g1 to the columns of f, and then applying the 
same transform to the rows of the resulting signal 
([7], p. 428). Similarly, a 2D DWT-1 is performed by 
applying the 1D DWT-1 defined by sets h2 and g2 
first to the rows and then to the columns of a 
previously compressed signal. 

A one-level DWT decomposes f into M/2-by-N/2 
subimages h1, d1, a1, and v1, where a1 is the trend 
subimage of f and h1, d1, and v1 are its first 
horizontal, diagonal, and vertical fluctuation 
subimages, respectively. Using the multi-resolution 
analysis (MRA) scheme [4], a one-level DWT may 
be repeated k ≤ log2(min(M, N)) times. The size of 
the trend signal ai at level i of decomposition is 1/4i 
times the size of the original image f (e.g., a three-
level transform produces a trend subimage a3 that is 
1/64th the size of f). Nevertheless, the trend subimage 
will typically be much larger than any of the 
fluctuation subimages; for this reason, the MRA 
scheme computes a k-level DWT by recursively 
applying a one-level DWT to the rows and columns 
of the discrete trend signal ak-1. Similarly, a one-level 
DWT-1 is applied k times to reconstruct an 
approximation of the original M-by-N signal f. 
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Quantization is the most common source of 
distortion in lossy image compression systems. 
Quantization refers to the process of mapping each of 
the possible values of a given sampled signal y onto a 
smaller range of values Q(y). The resulting reduction 
in the precision of data allows a quantized signal q to 
be much more easily compressed. The corresponding 
dequantization step, Q-1(q), produces signal ŷ that 
differs from the original signal y according to a 
distortion measure ρ. A variety of techniques may be 
used to quantify distortion; however, if we assume 
that quantization errors are uncorrelated, then the 
aggregate distortion ρ(y, ŷ) in the dequantized signal 
may be computed as a linear combination of SE for 
each sample. 

 
 
2 The Genetic Algorithm 
The goal of any effective image compression and 
reconstruction system is to simultaneously minimize 
two parameters: 
1. The number of bits needed to represent the 

compressed image produced by the forward 
transform (i.e., the FS). 

2. The distortion observed in the reconstructed 
image produced by the corresponding inverse 
transform (i.e., the SE). 

The purpose of the research described by this paper 
was to determine whether a GA [3] could be used to 
evolve coefficient sets representing non-wavelet 
MRA transforms capable of outperforming MRA 
DWTs under conditions subject to quantization error. 

The following parameters characterize the GA 
developed to achieve this goal: 
1. The maximum number of generations G = 2000. 
2. The size of the evolving population M = 2000. 
3. The number of multi-resolution levels MR = 3. 
4. The probability of crossover pc = 90%. 
5. The probability of mutation pm for any candidate 

solution was initialized to a user-specified 
minimum. If the current generation failed to 
identify a new best-of-run solution, pm was 
increased by a selected increment up to a user-
specified maximum mutation rate. The training 
runs described in this paper used min(pm) = 2%, 
max(pm) = 20%, and a 2% increment. 

6. The GA trained each transform using a 
representative 128-by-128-pixel subimage of the 
standard 512-by-512-pixel “couple.bmp” image. 
This subimage was chosen based on the results of 
previous investigations which demonstrated that 

the resulting evolved transforms generalized well 
for other images in the test set. 

For each of the tests described in this paper, each 
candidate solution specified the floating-point 
coefficients for sets g1, h1, h2, and g2. The GA 
seeded the initial population (generation 0) with one 
exact copy and M-1 randomly mutated copies of the 
D4 wavelet. Thus, sets g1, h1, h2, and g2 of every 
individual in the population each contained precisely 
four coefficients. After fitness evaluation, the 
individual with the best fitness value was copied into 
position 0 of the next generation, while the remaining 
M-1 positions were populated using tournaments of a 
user-specified number of randomly selected 
individuals from the current generation. 

Next, the GA performed single-point crossover 
on adjacent pairs of individuals with probability pc. 
The crossover operator randomly selected one of the 
four coefficient sets, and then randomly selected a 
crossover point within that set. The coefficients 
appearing at or below the selected crossover point in 
the selected coefficient set from each parent were 
exchanged to create two new candidate solutions. 

Finally, mutation was performed on each 
individual with probability pm. For this investigation, 
mutation consisted of multiplying a randomly 
selected coefficient from a randomly selected set by a 
factor randomly selected from a Gaussian distribution 
between 0.0 and 2.0 and centered upon 1.0. Previous 
studies suggested that an occasional sign change of 
coefficients could also be beneficial in reducing SE; 
therefore, with a (typically very small) user-specified 
probability, the mutation operator used in this study 
also negated the mutated coefficient. 
 
 
3 Fitness 
This study utilized two key quantities to measure 
fitness: 
1. File Size Ratio (FSR) = FS / (the size of the file 

compressed by the forward transform) 
2. Error Ratio (ER) = SE / (the SE in the image 

reconstructed by the inverse transform) 
Previous research [1] established the existence of a 
nearly linear Pareto-optimal front describing the 
trade-off between these two conflicting criteria. For 
this study, the fitness of each candidate solution 
against a particular image from the training set was 
measured as follows: 
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1. First, the GA used the forward transform 
coefficients specified by the candidate solution to 
compress the image. 

2. Next, compressed image was quantized using the 
quantization step defined for the current training 
run, encoded, decoded, and dequantized. 

3. Finally, the GA reconstructed the image using the 
inverse transform coefficients specified by the 
candidate solution, and calculated the FSR and 
ER. 

Given a training population consisting of one or more 
images, this study used the following algorithm to 
estimate the fitness of a given candidate solution: 
fitness = 0; 
for each training image 

if (FSR > 1.0 && ER > 1.0) 
fitness += FSRA + ERB; // case 1 

else if (FSR > 1.0 && ER ≤ 1.0) 
fitness += FSRC + ER; // case 2 

else if (FSR ≤ 1.0 && ER > 1.0) 
fitness += FSR + ERD; // case 3 

else 
fitness += FSRE + ERF; // case 4 

Here, A, B, C, D, E, and F are user-specified 
constants greater than 1.0. (For this study, A = B = C 
= D = 8 and E = F = 16.) Lower fitness values are 
better. Cases 1 and 2 thus explicitly penalize the 
fitness of transforms that increase the size of the 
compressed file; cases 1 and 3 penalize transforms 
that result in higher SE; and case 4 explicitly rewards 
transforms that simultaneously reduce both 
compressed file size and SE, relative to the wavelet. 
 
 
4 One Transform for All MRA Levels 
Previous research focused upon evolving coefficients 
for an inverse non-wavelet transform ([6], [5]) or a 
matched forward and inverse non-wavelet transform 
pair [1] that reduced mean SE (MSE) relative to the 
performance of a standard wavelet transform applied 
to the same images under conditions subject to a 
quantization step of 64. The resulting transforms 
consistently reduced MSE by as much as 25% when 
applied to images from both the training and test sets. 
Unfortunately, none of these previous studies 
involved MRA: instead, coefficients were optimized 
only for one-level image decomposition and/or 
reconstruction transforms. Subsequent testing 
demonstrated that the performance of these 
transforms degraded substantially when subsequently 
tested in a multi-resolution environment. 

In practice, virtually all wavelet-based 
compression schemes entail several stages of 
decomposition. Typical wavelet-based MRA 
applications compress a given image by recursively 
applying the h1 and g1 coefficients a defining single 
DWT at each of k levels. Image reconstruction 
requires k recursive applications of the h2 and g2 
coefficients defining the corresponding DWT-1. The 
JPEG2000 standard allows between 0 ≤ k ≤ 32 DWT 
stages; near-optimal performance on full-resolution 
images is reported for D = 5 levels ([7], p. 429).   

The first goal of this research effort was to 
determine whether a GA could evolve a single set of 
coefficients for a matched evolved forward and 
inverse transform pair satisfying each of the 
following conditions: 
1. The evolved coefficients were intended for use at 

each and every level of decomposition by a 
matched multi-level transform pair.  

2. The evolved forward transform produced 
compressed files whose size was less than or 
equal to those produced by the DWT. 

3. When applied to the compressed file produced by 
the matching evolved forward transform, the 
evolved inverse transform produced 
reconstructed images whose SE was less than or 
equal to the SE observed in images reconstructed 
by the DWT-1 from files previously compressed 
by the DWT. 

To achieve this goal, three training runs were 
performed. These runs differed only according to the 
specified quantization level. Test results (Fig. 1) 
confirmed the GA’s ability to evolve coefficients for 
a single transform that exhibited optimized 
performance when applied to every level of an MRA 
transform. For Test 3, the GA evolved coefficients 
that simultaneously reduced SE by almost 6.5% 
while maintaining a compressed file size smaller than 
that produced by the D4 wavelet. These results, 
combined with similar observations from previous 
studies (e.g., [1]), substantiate the following claims: 
1. A GA is capable of evolving matched forward 

and inverse transform pairs that outperform 
DWTs at a specified quantization level. 

2. The performance improvement of evolved 
transforms over DWTs increases in proportion to 
the level of quantization. 

Fig. 2 tabulates the coefficients produced by the 
training runs from Fig. 1, and notes the percentage 
change in each evolved coefficient from sets g1, h1, 
h2, and g2, relative to the corresponding coefficient 
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Test Q File Size / SE (DWT) File Size / SE (evolved) Improvement (SE) 

1 16 2162 / 447535.38 2161 / 438555.80 -2.006% 
2 32 1229 / 1093462.63 1228 / 1047424.95 -4.210% 
3 64 667 / 2527851.95 666 / 2364332.55 -6.469% 

 
Fig. 1. Improvement of Evolved Transforms over Wavelets as a Function of Quantization Level.

 
Test Set Coefficients (Percentage magnitude difference from D4 coefficients) 
1 g1 -0.4831928406, 0.8365163040, -0.2277694276, -0.1289164106  
  (+0.05%, unchanged, +1.62%, -0.38%) 

h1 -0.1294917987, 0.2242505778, 0.8398953785, 0.4793849332 
(+0.06%, +0.05%, +0.40%, -0.74%) 

h2 0.4830777810, 0.8291240048, 0.2251359248, -0.1227483711 
 (+0.02%, -0.88%, +0.44%, -5.15%) 
g2 -0.1318678078, -0.1988169414, 0.8344765791, -0.4649087239 
 (+1.90%, -11.30%, -0.24%, -3.74%) 

2 g1 -0.4851359202, 0.8394985463, -0.2269758897, -0.1264251009 
  (+0.45%, +3.57%, +1.26%, -2.31%) 

h1 -0.1300256428, 0.2240904941, 0.8398953785, 0.4798481072 
 (+0.48%, -0.02%, +0.40%, -0.64%) 
h2 0.4845747470, 0.8203178205, 0.2232898873, -0.1133667585 
 (+0.33%, -1.94%, -0.38%, -12.40%) 
g2 -0.1312233947, -0.1681967819, 0.8352313868, -0.4547615370 
 (+1.40%, -24.96%, -0.15%, -5.84%) 

3 g1 -0.5008454816, 0.8365163040, -0.2158388997, -0.1314604618 
  (+3.70%, unchanged, -3.71%, +1.58%) 

h1 -0.1285400096, 0.2241438680, 0.8377104749, 0.4827317796 
 (-0.67%, unchanged, +0.14%, -0.05%) 
h2 0.4896825540, 0.8082258125, 0.2183220074, -0.1034099818 
 (+1.39%, -3.38%, -2.60%, -20.09%) 
g2 -0.1443190513, -0.1399062106, 0.8240345243, -0.4365732803 
 (+11.52%, -37.58%, -1.49%, -9.61%) 

 
Fig. 2. Evolved Coefficients and Percentage Change from D4 Coefficients: One Transform for All MRA Levels 

 
 
from the D4 wavelet. Note that, although coefficient 
sets g1, h1, h2, or g2 for every candidate solution 
were initialized to randomly perturbed copies of the 
coefficients defining the D4 wavelet, 45 of the 48 
coefficients (93.75%) have undergone some change 
during the evolutionary process. This result 
corroborates previous test data and underscores the 
fact that the search space immediately adjacent to the 
D4 wavelet appears to be rich with non-wavelet 
transforms that may outperform wavelets under 
conditions subject to quantization error. Close 
inspection of these coefficients reveals an interesting 
phenomenon: in general, the greater the amount of 
quantization, the greater the difference between 
evolved coefficients and wavelet coefficients. Also 
interesting is the fact that none of the evolved 

coefficients differed in sign from the corresponding 
wavelet coefficient. Whatever benefits the sign 
change mutation may have had during previous 
studies (without MRA) appears to have been 
eliminated during the evolution of a single set of 
coefficients for the optimized MRA transforms 
identified during this study. 
 
 
5 Generalization Properties of 

Evolved Transforms 
The MRA transform coefficients shown in Fig. 2 
were evolved using a single representative subimage 
extracted from “couple.bmp”. The transform from 
Test 3 was subsequently tested against several widely 
used images to determine whether it was capable of 
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achieving similar error reduction for images not used 
during training. Fig. 3 compares the aggregate SE for 
the evolved transform from Test 3 to that of the D4 
wavelet, when tested under conditions subject to 
identical quantization error (64). The evolved 
transform outperformed the D4 wavelet for all but 
one of the test images. This evidence suggests that 
transforms trained on a representative subimage are 
capable of exhibiting optimized performance when 
tested against a broad class of images having similar 
visual qualities. 
 
 
6 Conclusions 
This research demonstrated the following key points: 
1. A GA could evolve coefficients describing a 

single matched forward and inverse transform 
pair that was capable of outperforming a 
similarly structured standard DWT for a specified 
MRA level. 

2. The advantage of using evolved MRA transforms 
over DWTs increased in proportion to the 
specified quantization level. 

3. MRA transforms evolved against a representative 
training image also outperformed DWTs when 
subsequently tested against arbitrary images. 

4. Considerable additional testing will be necessary 
over a variety of training scenarios to determine 
whether any discernable pattern in the evolved 
coefficients emerges. 

 
 
7 Future Directions 
The amount of computation needed to establish an 
upper bound on the performance enhancement to be 
gained via evolved transforms far exceeded available 

resources. The results summarized above should be 
interpreted as having demonstrated the feasibility of 
using GAs to evolve optimized MRA transforms. 
Close inspection of training run results indicate that 
most GA runs were continuing to make evolutionary 
progress, even as the number of generations 
approached G. Thus, larger-scale runs may evolve 
coefficient sets for MRA transforms that result in 
considerably greater SE reduction for a given class of 
images. 
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Test Image SE: Evolved Transform SE: D4 Wavelet Change 
airplane.bmp 93.92 91.74 +2.4%   
baboon.bmp 321.18  331.19 -3.0% 
barb.bmp 197.80  202.98 -2.6% 
boat.bmp 111.81  116.89 -4.3%   
couple.bmp 137.36  143.31 -4.2% 
fruits.bmp 80.35  83.00 -3.2% 
goldhill.bmp 115.76  120.19 -3.7% 
lenna.bmp 102.74  106.86 -3.9% 
park.bmp 149.84  155.22 -3.5% 
susie.bmp 106.66  110.23 -3.2% 
zelda.bmp 51.13  53.81 -5.0% 

 
Fig. 3. Evolved Transforms Exhibit Optimized Performance when Tested Against Other Images. 
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