
 1

Software Reliability Nonlinear Modeling and Its Fuzzy Evaluation

GUO JUNHONG1,2, YANG XIAOZONG1, LIU HONGWEI1

School of Computer Science and Engineering
 1Harbin Institute of Technology

Harbin, Xidazhi street No.92 150001
School of Computer Science and Technology

2Heilongjiang University
Harbin, Xuefu road No.74 150080

CHINA

Abstract: - Based on the research of the present developing situation in software reliability models, this paper
found that it was difficult to satisfy the hypothesis condition of models in actual projects, and these hypothesis
restrict the universality of those models. However, the testing data satisfies the properties of time series. This
paper presents a nonlinear model of software reliability based on time series and gives corresponding
algorithms. The simulation experiments show the accuracy and efficiency of this new model. The newly
proposed model suits the requirement of software engineering better and its parameters can reflect the changing
of software reliability. The new model can have more accurate analysis and forecast to software reliability issue
without any strict assumption. Furthermore, the fuzzy theory is introduced to evaluate software reliability. Using
the fuzzy theory that integrated the fuzziness and randomness, the software reliability evaluation method is
more approaching to the real system and the accuracy of software reliability evaluation is promoted greatly.

Keywords: - Software reliability nonlinear model; Time series analysis; Software reliability growth model;
Software reliability evaluation

1 Introduction
Due to the complexity of computer software systems
and the increasing of development cost, it is of
utmost importance to develop high quality software
systems. The quality of the software system is
described by many metrics such as: complexity,
maintainability, availability, reliability, etc. As
tragedies of unreliable software often take place,
people recognize the importance of developing
reliable software. Now, the reliability problem in
software systems is a well-known research
field.Therefore, designing reliable software and
evaluation software reliability accurately are the
most important issues [1].

The standard definition of reliability for software
(Musa, Iannino, and Okomoto, 1987) is the
probability of execution without failure for some
specified interval of natural units or time [2].
Software failures are the manifestation of software
errors which are introduced into the software by
software engineers during the phases of software
development cycle. In the literatures, researchers
establish software reliability growth model (SRGM)
to measure software reliability. To apply these
models, it is necessary to know how well the models
suit an actual observation failure data set. In order to

obtain accurate software reliability estimation, it
requires a large number of failure data which are not
usually available until the system has been tested for
a long relative period. Many software reliability
engineers are more interested in estimating the
software reliability as early as possible [3].

This paper proposes a method for early and more
accurate software reliability prediction by time series
analysis. Its calculation methods are simple and
without any strict assumption. This paper is
organized as follows. Section 2 presents the state of
software reliability modeling. Section 3 shows the
feasibility of software reliability nonlinear modeling
based on time series. The implemented algorithm is
given in section 4. Section 5 provides the simulation
analysis of testing data. In section 6, fuzzy theory
are used to evaluate software reliability. Finally, a
brief conclusion is presented.

2 The State of Software Reliability
Modeling
SRGM is defined as the mathematical relationship
between the number of software errors removed and
testing time. Classical SRGMs have great influence

4th WSEAS Int. Conf. on NON-LINEAR ANALYSIS, NON-LINEAR SYSTEMS and CHAOS, Sofia, Bulgaria, October 27-29, 2005 (pp49-54)

 2

on software reliability modeling research. In spite of
the fact that many software reliability growth models
have been proposed in the software reliability
literature since the first one appeared in 1972 [4], no
one of them can deal properly with all possible
situations.

According to the software error removal process,
Jelinski and Moranda proposed the first model. The
model has a simple structure and assumptions. Then
Musa proposed the Basic Execution Time Model
which has similar assumptions to those of Jelinski
and Moranda(J-M) model [5]. J-M model made a
major contribution to the understanding the relation
of error removal and software execution time.
Goel-Okumoto model is the first nonhomogeneous
Poisson process(NHPP) SRGM. Goel-Okumoto
model assumed that the error removal process
follows NHPP. The assumption of this model is
similar to the Basic Execution Time model of Musa
[6].

Those models are mainly based on some
assumption conditions and believe that SRGM has
been established according to a certain probability
process. The assumptions are the key factors of
establishing SRGM. There is a relation between
assumptions chosen and modeling success. But in
practical application, quite a few assumptions are
unfit to software developing process, which can not
be accepted by most people, thus limiting the
application of the models. Using this kind of model
can even get the unimaginable parameter under
some conditions. Furthermore, a software failure
data set being evaluated can get different results by
using different models. So it has reached a common
viewpoint in software reliability evaluation field, in
that there isn’t a “good model” that can fit all
failures data very well [7].

J-M model assumes that all errors that have been
checked in the test can be eliminated and removes
one error each time. Removing one error does not
affect the remaining errors. But in fact, software
development and error removal are all human
behaviors, which are unpredictable, so it can not
avoid of introducing new errors during the process
of error removal. Goel-Okumoto model suppose that
each error is independent, each error has the same
probability of leading system failure and each failure
interval time is independent. Sometimes, modules in
software program have some relations, so it is
impossible to have complete independence, and the
probability of each failure that causes system failure
is not the same [8,9].

In these three models, the cumulative numbers of
errors removal grow exponentially with the testing
time. The exponential growth curve is due to the

assumption that the error removal intensity is
linearly related to the remaining number of software
errors [10]. In many software development projects
it was observed that the relation between the
cumulative numbers of errors removed and the
testing time is not linear. So we should establish
nonlinear model to evaluate the software reliability.

3 The Feasibility of Software
Reliability Nonlinear Modeling Based
on Time Series
Time series analysis theory is a method of describing
statistics character of dynamic data, which can set up
time series model from limited sample data, its
advantage is convenience and practicality. There are
many literatures on the development of estimation
and prediction in autoregression time series models.
Time series analysis method is well studied in some
statistical literatures. However, its use in software
reliability engineering is rather limited [11].

Time series prediction can be stated as follows:
given a finite sequence tXXXX ,...,,, 321 , predicting
the continued sequence ,..., 21 ++ tt XX . For example,
{ }tX can be viewed as the stochastic failure intervals
or the number of failures per time interval [12].

Based on software reliability analysis, input data
are cumulative number of software failures or failure
intervals mainly. That is to say, software reliability
failure data are discrete data sequence, whether it is
steady or not, we can use the data to modeling and
evaluate software reliability by applying proper time
series method [13].

During the process of software reliability
evaluation, it can be seen that the nonlinear
phenomena exist very commonly and we can not
deal these data with linear model. The relevant
software reliability time series nonlinear model are
deduced in the following section. This modeling
method proves that software reliability evaluation
also can be presented in the way of time series
nonlinear model.

4 The Implemented Algorithms
The cumulative number of failures M(k) is
increasing and trend to a fixed value which is
defined as the desired cumulative number of failures.

Assume cumulative failures of software are
stochastic variable. We can find that all total failures
in one time interval are exponential decreasing
according to experience. Then we have software
reliability nonlinear model

4th WSEAS Int. Conf. on NON-LINEAR ANALYSIS, NON-LINEAR SYSTEMS and CHAOS, Sofia, Bulgaria, October 27-29, 2005 (pp49-54)

 3

)1()1()(−−= kMkMbkM k ＋ (1)
Let kbk =)(θ , then the software reliability
nonlinear model can be transformed to time series
model as follow:

)()1())1)(()(kkMkkM εθ +−+= (2)
where)(kε is zero-average white noise. Obviously,
we can get

)1()(−= kbk θθ (3)
that’s to say, parameter)(kθ can be described by
the following AR time series model

)()1()(kkbk ξθθ +−= (4)
where)(kξ is zero-average white noise.

As testing time is based on the unit of day, the
cumulative numbers of software failures fluctuate
greatly. Considering the series { })(kθ got from
observed testing data exist much disturbance noise,
we apply a smoothing filter to testing data as
following steps: first, we get series { })(kη simply as
following equation

NkkMkMk ,...2,1)1(/)()(=−−=η , (5)
and let)2()1(ηη = ; then we can get time series
{ })(kθ from { })(kη by applying smoothing filter:

)()1()1()(kkk ηλλθθ −+−= , (6)
where the initial is)1()1(ηθ = and 7.0=λ in the
simulation.

Now we can use exponential weighted Least
Squares method [14] to estimate the parameter
b from equation (4). Formulas can be shown as the
following equations:

)]()(ˆ)1([

)1()(ˆ)1(ˆ

kkbk

kkkbkb

θθ −+

++=+
 (7)

)()(
)()()1(2 kPk

kkPkK
θω

θ
+

=+ (8)

)()]()1(1[1)1(kPkkKkP θ
ω

+−=+ (9)

where ω is forgetting factor, 10 << ω ,
commonly is about 0.9~0.99. The initial values are
given by:
 1(0)ˆ =b , 410)0(=P .
Then we can calculate the estimation as follows:

)1()1(ˆ)(ˆ −−= kkbk θθ (10)

)1()1)(ˆ()1|(ˆ −+=− kMkkkM θ (11)
Based on these results, we can get the prediction
from the following function:

,...2,1
)|1()(ˆ)|(ˆ

=
−+=+

p
NpNNbNpN θθ

 (12)

)|1(ˆ
)1)|(ˆ()|(ˆ

NpNM

NpNNpNM

−+

++=+ θ
 (13)

where)(ˆ)|(ˆ NNN θθ = ,)()|(ˆ NMNNM = .

5 Simulations and Analysis
Software failure data in Table 1 comes from Data8 in
chapter 17 of Handbook of Software Reliability
Engineering [15], where Day is the test time and CF
is cumulative number of software failures. To view
the veracity and accuracy of prediction, N is
assumed as 98 and p is 10 in the simulation.

Table 1 A set of software failure data
Day CF Day CF Day CF Day CF

0 5 52 211 72 346 92 460
3 10 54 217 73 367 93 463
6 15 55 230 74 375 94 464
9 20 56 234 75 381 95 465
13 26 57 236 76 401 96 466
22 43 58 240 77 411 97 467
29 36 59 243 78 414 98 468
31 43 60 252 79 417 99 469
32 47 61 254 80 425 100 470
36 49 62 259 81 430 101 472
37 80 63 263 82 431 102 473
40 84 64 264 83 433 103 475
41 108 65 268 84 435 104 476
44 157 66 271 85 437 105 477
46 171 67 277 86 444 106 478
48 183 68 290 88 446 107 479
49 191 69 309 89 448 108 480
50 200 70 324 90 451
51 204 71 331 91 453

Table 2 Comparison of observed data and estimated
data of nonlinear model

Day Observed
Data

Estimated
Data

Estimated
Error

Relative
Error

5 10 11.6828 1.6828 0.1683
15 26 27.2344 1.2344 0.0475
25 34 34.1372 0.1372 0.0040
35 47 47.0364 0.0364 0.0008
45 157 157.0992 0.0992 0.0006
55 230 217.0308 -12.9692 -0.0564
65 268 264.0089 -3.9911 -0.0149
75 381 375.0463 -5.9537 -0.0156
85 437 435.0170 -1.9830 -0.0045
95 465 464.0065 -0.9935 -0.0021

)(
)()(ˆ

error estimated Relative
kM

kMkM −
=

4th WSEAS Int. Conf. on NON-LINEAR ANALYSIS, NON-LINEAR SYSTEMS and CHAOS, Sofia, Bulgaria, October 27-29, 2005 (pp49-54)

 4

Table 3 Comparison of observed data and predicted
data of nonlinear model

Day Observed
Data

Predicted
Data

Predicted
Error

Relative
Error

99 467 467.8342 0.8342 0.0018
100 468 469.4710 1.4710 0.0031
101 469 470.9310 1.9310 0.0041
102 470 472.2329 2.2329 0.0048
103 472 473.3934 1.3934 0.0030
104 473 474.4274 1.4274 0.0030
105 475 475.3486 0.3486 0.0007
106 476 476.1690 0.1690 0.0004
107 477 476.8995 -0.1005 -0.0002
108 478 477.5499 -0.4501 -0.0009

)(
)()|(ˆ

error predicted Relative
pNM

pNMNpNM
+

+−+
=

Fig.1)(kη

 Fig.2)(kθ ,)(ˆ kθ and)|(ˆ NpN +θ

Fig.3)(kM ,)(ˆ kM and)|(ˆ NpNM +

 Fig.4 Parameter b

 Fig.5 Relative error

Table 1 and Table 2 show the estimation and
prediction of cumulative number of software failures.
We can find that the relative errors are very small.
Fig.1 illustrates the effect of time series)(kη . Fig.2
gives the curve of parameter)(kθ and its
estimation and prediction,)(kθ denotes the
changing of direction and speed. In this Figure,
besides lacking testing data in the beginning of
estimation, all estimations of)(kθ are less than
0.15. We can have the result that the trending of
software reliability is increasing step by step. Fig.3
shows the observed, estimated and predicted result
of time series nonlinear model)(kM .

In Fig.4, we get the curve of parameter b . In the
processing of error removal, b is not a constant
value and it changes continuously. We can see that
this estimation accords with the characteristic of
software testing error removal. Parameter b can
show the speed and efficiency of error removal. In
the beginning of test, the degressive speed of
parameter b is very fast, it shows that the
efficiency of error removal is very high and the
software reliability increases rapidly. In the middle
phase, b is stable relatively which indicates the
efficiency of error removal is unchangeable. After

4th WSEAS Int. Conf. on NON-LINEAR ANALYSIS, NON-LINEAR SYSTEMS and CHAOS, Sofia, Bulgaria, October 27-29, 2005 (pp49-54)

 5

stated periods, b increases and it shows that the
efficiency of software error removal is lower and the
growth of software reliability is slow down. In that
new errors can be introduced into the software
during the error removal process and the error
numbers are more than that of removal, we must find
out the reason and get a solution. At last, b
stabilizes to 0.0014 and it shows that the efficiency
of error removal has no change and software
reliability is increasing steadily.

Fig.5 illustrates the relative errors and shows good
evaluation results of the new nonlinear model.

6 Software Reliability and Its Fuzzy
Evaluation
From Fig.2, we can see that when)(kθ is closer to
zero, the number of remaining errors is less and
software reliability is higher. So the objective of
software reliability can be designed

))(ˆ(log)(kkR θ−= (14)
Simulation result is showed in Fig.6 and Fig.7. From
the figures, we can see that software reliability rises
on the whole trending. Strictly speaking,)(kR is a
fuzzy variable. So we can use fuzzy method to
evaluate software reliability after analyzing and
forecast reliability based on testing data. We
compartmentalize some grades to)(kR and use
fuzzy variable to describe the software reliability.
The results of fuzzy evaluation can be used to
determine the covering range of the linguistic
variables and confirm the fuzzy membership grade.
Considering the fuzzy of variable)(kR , we can
establish relevant fuzzy linguistic variables and
fuzzy rule to estimate software reliability as
tabulated in Table 4.

Fig.6 Evaluation function

Fig.7 Software reliability index R

Table 4 Fuzzy evaluation of software reliability index

R (∞− ,1) [1,1.5) [1.5, 2) [2,2.5) [2.5,3) [3, ∞+)

Software
reliability

extremely
low

Very
low lower higher very

high
extremely

high

Through Table 4, we can get more practical results

than former evaluation. For example, one possible
result of software reliability fuzzy evaluation is
“software reliability is very high and can use soon”
or “software reliability is general and the software
should be tested further and improve reliability” and
so on. In this example, 8653.2)108(=R , the
evaluation of software reliability is “very high” from
Table 4.

7 Conclusion
Although many SRGMs have been proposed since
the first one appeared in 1972, no one model can suit
all projects. While new projects arose, new SRGMs
were created to suit them. It is difficult to propose a
universal model to estimate and forecast software
reliability.

Through studying, we can find that testing data
accord with the properties of time series. So we can
apply proper time series model to evaluate software
reliability. In the testing and modeling, we can find
that nonlinear phenomenon exist in many situations
and we can not neglect and deal with as linear model.
This paper proposes a new method to establish
software reliability.

The new nonlinear forecasting model of software
reliability has been proposed. The new model
consider the disturb noise of observed data and have
no need for strict hypothesis condition and the
parameters are changing with time. All these accord
with the characteristic of real projects. This method
has demonstrated good results in terms of
accumulative failures. The nonlinear modeling

4th WSEAS Int. Conf. on NON-LINEAR ANALYSIS, NON-LINEAR SYSTEMS and CHAOS, Sofia, Bulgaria, October 27-29, 2005 (pp49-54)

 6

technique can be used for nonlinear and non-
stationary processes of the data. Finally, we
introduce fuzzy theory and unify the fuzziness and
randomness to evaluate software reliability. The
results of simulation example show that the new
method presented in this paper is very useful to
evaluate software reliability.

References:
[1] FL. Popentiu, D.N. Boros, Software Reliability
Growth Supermodels, Microelectronics and
Reliability, 1996, Vol 36, No. 4, pp. 485-491.
[2] Takamasa Nara, Masahiro Nakata, Akihiro
Ooishi, Software Reliability Growth Analysis-
Application of NHPP Models and Its Evaluation,
IEEE Transactions on Reliability, HASE 1996, pp.
222-227.
[3] Huang Xizi, Software Reliability、Security and
Quality Assurance, Publishing House of Electronics
Industry, 2002.
[4] J.Musa, A.Jannino, and K.Okumoto, Software
Reliability- Measurement, Prediction, Application,
McGraw Hill, New York,1987.
[5] J.D. Musa, A theory of software reliability and its
application, IEEE Transactions on Software
Engineering, SE-1(3), September, 1975, pp. 312-
327.
[6] AL Goel, K. Okumoto, Time-dependent error
detection rate model for software reliability and
other performance measures, IEEE Transactions on

Reliability, R-28(3), August, 1979, pp. 206-211.
[7] PK Kapur, S. Younes, Modelling an imperfect
debugging pheonmenon in software reliability,
Microelectronics and Reliability, 1996, vol.36, pp.
645-650.
[8] Z. Jelinski and PB Moranda, Software Reliability
Research, Statistical Computer Performance
Evaluation, Academic, New York, 1972, pp.
465-485.
[9] Amerit L Goel., Software reliability models:
Assumptions,limitations and applicability, IEEE
transaction on software engineering, 1985, SE11
(12), pp. 1411~1425.
[10] Zhang, X.; Pham, H., An analysis of factors
affecting software reliability, Journal of Systems and
Software, 2000, pp. 43-56.
[11] Wang ZL., Time series Analysis, Publishing
House of Chinese Statistics, 2000.
[12] Granger Clive WJ, Teräsvirta Timo, A simple
nonlinear time series model with misleading linear
properties, Economics Letters, 62 ,1999, pp. 161-
165.
[13] Stephen HKan, Metrics and Models in Software
Quality Engineering Second Edition, Publishing
House of Electronics Industry, 2004.
[14] Dengzili, Theory and Application of Optimal
Filtering: Modern Time Series Analysis Method,
Publishing House of Harbin Institute of Technology,
2000.
[15] M. R. Lyu, Ed., Handbook of Software
Reliability Engineering, McGraw Hill, 1996.

4th WSEAS Int. Conf. on NON-LINEAR ANALYSIS, NON-LINEAR SYSTEMS and CHAOS, Sofia, Bulgaria, October 27-29, 2005 (pp49-54)

