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Abstract: This paper presents a simple but efficient algorithm for deinterleaving of periodical pulse sequences. 
Based upon time of arrival analysis, one or more pulse repetition intervals are determined from the sequential 
difference histogram just by detecting the maximum value in the histogram. The algorithm is compared to 
some typical signal sorting methods and implemented in C language program. It is shown that, the proposed 
algorithm is timesaving, efficient and easy to implement for real-time applications comparing with those based 
upon threshold functions or transform computing which is time-consuming.  
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1 Introduction 
In modern warfare, electronic supporting measures 
(ESM) and electronic counter counter-measures 
(ECCM) encounter increasingly arduous tasks when 
electromagnetic environments become severer and 
more complex. One important task of ESM is to collect 
information about how many radars and/or frequency 
and hopping (FH) mobile communication sets are 
simultaneously active and to identify their criticalities. 
This is done by the preprocessor in the reconnaissance 
subsystem, where deinterleaving plays a great 
important role in the detection and recognition process 
including both interception of the pulses and identifying 
each distinct emitter.  

Deinterleaving is a kind of clustering analysis, 
which clusters interweaved pulses intercepted by a 
scout or by other means, into distinct groups belonging 
to respective emitters, according to the pulses' features 
and a lot literature has shown interests in radar pulses 
deinterleaving. In [1] and [2], pulse parameter 
measurement and two types of deinterleaving 
algorithms of Cutlass ESM system are discussed as 
"pigeon hole" technique and "slicing". In [3], a 
pigeon-hole-like [1, 2] algorithm with PRI estimation 
technique using TOA difference histogram analysis has 
been approached. Based on [3], an improved algorithm 
with an exponential threshold function has been 
proposed in [4], which uses only sequential difference 
histogram (SDIF) to reduce processing time. In [5, 6], 
radon transform is introduced to estimate PRI and 
extract pulses via image processing, which, however, 
acts similarly to histogram and involves additional 
complex transformation. In [7, 8], Noone and SHYU et 
al introduce neural network to deinterleave radar 
signals which involve complex neural elements. This 
paper first evaluates the performance of deinterleaving 
algorithm proposed by D.J. Milojevic and B.M. 
Popovic [4], and then gives a simple but efficient PRI 
estimator which is based upon peak-value-detection in 
TOA-difference histogram.  

In Section 2, we gives a summary of typical 
deinterleaver and a brief description of exponential 

function based PRI estimator [4]. In Section 3, the 
proposed algorithm is given and performance 
evaluation is illustrated in Section 4. Section 5 
concludes the paper.  

2 System Model and Definitions 
In typical ESM systems, other description information 
of the intercepted pulses are also obtained to form a 
series of pulse description words (PDW), e.g., angle of 
arrival (AOA) or direction of arrival (DOA), pulse 
amplitude (PA), carrier frequency (CF), pulse width 
(PW), modulation of pulse (MOP) and so on. 
Deinterleaving is performed by analyzing the PDWs of 
the mixed pulse sequence, i.e., on the analysis of the 
correlation of the pulses according to their features.  

However, typically, only TOA and AOA are used in 
most deinterleaving algorithms, because, for example, 
PA is much related with channel status and not reliable 
for identifying emitters. Though AOA cannot be 
precisely measured with state-of-the-art devices, 
emitters are often relatively fixed to the detector during 
the detector's short scanning interval (Tmax), thus it is a 
reliable parameter for clustering. It is apparent that 
TOA is very important to identify periodical emitters. 
Therefore, in [1] and [2], deinterleaving algorithms 
belonging to the family of so-called 'multi-parameter' 
algorithm are discussed, which use only AOA and TOA 
to deinterleave the mixture. 

Fig.1 illustrates structure of typical deinterleavers 
[1-4]. As assumed, each emitter emits pulses at certain 
interval, or pulse repetition interval (PRI). All the 
pulses are mixed by the channel and intercepted by a 
scout’s detector and sorted according to each pulse's 
time of arrival (TOA). Deinterleaving is performed in 
two steps: 1) AOA-clustering, which first clusters 
pulses from certain degree of arrival; and 2) TOA- 
deinterleaving. As the most important and kittle step, 
TOA-deinterleaving is further divided into two steps: a) 
PRI estimation and b) sequence searching, though they 
may be working overlapped in time, e.g., in classical 
heuristic techniques. In other words, the deinterleaver 
obtains a possible PRI and begins sequence searching 
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to seek pulses to form a pulse sequence matching the 
estimated PRI, i.e., a PRI-sequence. If searching 
succeeds, the deinterleaver extracts the matched pulses 
from the massive mixture. The deinterleaver repeats the 
two steps repeatedly until the remaining pulses cannot 
form any PRI sequence. Apparently, the more accurate 
is the estimated PRI, the more likely the sequence 
searching succeeds, thus, much less time will be wasted 
by failure searching.  

 
Fig.1 Pulse interception and deinterleaving 

 
Fig.2 Pulse mixing by channel 

3 SDIF and PRI Estimation 
3.1. SDIF description 
It is natural to arrange the intercepted pulses 
according to TOA and to denote each pulse by its 
TOA when TOA-clustering is concerned (See Fig.2). 
Therefore, a pulse sequence of N pulses, in terms of 
TOA, can be expressed as: 

 { } { }1 2 1, , ..., ,i Nt t t t t−� N  (1) 
where ti denotes TOA of the ith pulse 
and , and 
 

0, 0j it t j i> > ∀ > >

{ } max, 1 ,1i kl kt t k n l T PRI∈ ≤ ≤ ≤ ≤ ⎢⎣ ⎥⎦

,kl k lt t k k or l l= ≠ ≠

 (2) 
where tkl is the lth pulse of the kth emitter whose PRI 
is PRIk, noting that when  
 '  (3) 
occurs, a pulse missing may happen especially when 
their PDW.CF are close enough.  

' '
'

In [3, 4], TOA differences are calculated to 
produce sequential difference histogram (SDIF) for 
PRI estimation. TOA differences between adjacent 
pulses are said to belong to the first level difference 
({ }1it∆ ), and those between each pulse and the next 
but one belong to the second level difference 
( { }2it∆  ), and so on (See Fig.2). In general, the 
sequential difference at level c is given as: 

 { } { }ci ci ci c i it t t t t+∆ ∆ ∆ = −�

cit∆
1,2,..., ,0i N c c N= − < <

, (4) 
where  denotes TOA difference 
and . 

All TOA differences of level c are calculated to 
form a SDIF [4] of level c. In contrast, when all TOA 

differences at level c down to one are taken into 
account, the histogram is called cumulative 
difference histogram (CDIF) [3]. Apparently, CDIF 
involves more computation operations [4] than SDIF. 
Therefore, only SDIF is discussed in the following 
sections. 

To illustrate, Fig.3-(a) shows a segment of a 
typical pulse sequence comprising three 
subsequences whose PRIs are 12000, 15340  and 
27000 denoted by pulse height of 1, 2 and 3, 
respectively, as well as the SDIF histogram of level 1 
and level 2 shown in Fig.3-(b) and Fig.3-(c).  
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Fig.3 Illustration of TOA difference histogram 

Note that the SDIF of 1st level gives a peak at 
12000us, and in the SDIF of 2nd level, the bin-heights 
at 12000, 15340 are much higher than those 
elsewhere. In addition, further discussion will show 
that it is often true that the peaks in SDIF of certain 
level correspond to the right PRIs. 

3.2. Identification of PRIs 
3.2.1. Traditional PRI Identifications 
When histogram is formed, the PRI identifying 
procedure begins. Because of its significance in 
TOA-deinterleaving, PRI estimation is always a 
hotspot. Most literatures presume that pulses' TOA 
can be regarded as random events characterized by 
certain probability distribution function, and then 
threshold functions are derived to obtain PRI(s) 
where bin-height(s) of SDIF of CDIF exceeds the 
thresholds [3, 4]. For example, in [4], on the 
supposition that leading edge of pulses (TOA) could 
be observed as random Poisson points, an optimal 
detection threshold function is derived as: 

 , (5) 
where E is the total number of pulses, N is the total 
number of bins in the histogram, and c is the difference 
level, while x and k are experientially determined 
constants. However, our MATLAB© simulation results 
show that the proposed algorithm in [4] maybe less 
efficient than the author believed and the experiential 
parameters x and k obtained from one scenario can not 
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be applied to others. 
1) Evaluation of performances by process time in 

flops given by MATLAB is not exactly proportional 
to the real time that would be expensed by real 
systems, especially in fixed-point systems*.  

2) In MATLAB, operations such as sqrt, sin, cos, 
exp and log take no flops if the operant is only a 
scalar, and they take only one flop for each item of X 
when X is a vector of size M×N, where M×N>1.  

3) More crucially, the experientially determined 
parameters (x, k) are highly sensitive to the number 
of simultaneously active emitters and combination of 
their PRIs, which are usually not prior known to the 
ESM system. To illustrate, in Fig.4, threshold values 
together with SDIF are plotted under three threshold 
parameter (x, k) pairs which are obtained from more 
than 50 simulations on five-radio cases. In Fig.4-(a) 
(five radios), we can identify three PRIs whose 
bin-height is above two of the thresholds, while in 
Fig.4-(b) (10 radios), no bin-height is above any of 
the thresholds. On the other hand, threshold 
parameters (x, k) fit for 10-radio cases cannot be 
applied to five-radio cases either. Therefore, it is 
difficult to apply this algorithm to real ESM systems. 

3.2.2. A Simple PRI Identification Approach 
In Fig.4-(b) and 3-c, we have already seen that the 
TOA differences corresponding to extreme values in 
SDIF are correct PRIs. Other simulations prove that 
it is not a casual phenomenon, and it is suggested 
that the smaller the PRI is, the more often it makes a 
peak in low-level SDIF.  

Here, we have recalled †  the very simple and 
efficient technique to obtain possible PRIs to meet 
the requirements of our real-time ESM system. 

Suppose, the scout's scanning interval is Tmax and 
there are M simultaneously active radios with PRIs 
as {PRIk}, k=1, 2… M. When no pulse is missing, 

maxkN T PRI= ⎢⎣ k ⎥⎦  pulses from the kth radio are 
intercepted and its Nk pulses segment the period Tmax 
into Nk sections to form a comb whose tooth pitch is 
PRIk. All the same length combs with different 
pitches and “random initial phase”. And apparently, 
the smaller the PRI is, the denser the comb is, i.e., 
the less other pulses found in its comb slot. Therefore, 
by counting pulses that falls into a certain PRI comb 
slot, we can found peaks that correspond to low PRIs, 
and averagely, the corresponding peak appears firstly 
on c level SDIF, where 
 min

k

PRI
PRIk

c ⎢ ⎥= ⎣ ⎦∑
                                                       

 (6) 
 

* For example, the built-in functions provided by MATLAB© 
such as comparison, maximizing and minimizing and searching 
(find) -which are most frequently used in deinterleaving 
algorithms - would "expense" no single flop. That’s why in 
newly published MATALB 6.0 and later obsoletes flop function.  
† However no literature covers it. 

where ⎢ ⎥⎣ ⎦i  returns the floor of “•”. For example, 
given PRIs as in Fig.3, c= [1 2 5] thus 12000us 
appears in the 1st SDIF. And in case of Fig.4-a, it can 
also be predicted that the 1st SDIF tells 17331us. 

Thus, if there are N radios of the same PRI and 
when no pulse missing occurs, the real PRI would 
only appear at the Nth level SDIF. 

In a word, in any case above we can always find 
peak in an SDIF of certain level, which equals to a 
real PRI. Our simulation and experiments show that 
the decision level is often lower than when use 
threshold-function algorithms [4] even with proper (x, 
k) pairs. Moreover, the technique introduced involves 
only comparative and additive operations, thus lots 
of processor time can be saved.  
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Fig.4 PRI estimation Performance of that in [4] in 

different Scenarios. 

3.3. Deinterleaving Algorithm 
As stated in Section 1, the proposed algorithm in this 
paper uses two pulse parameters: AOA and TOA. 
The deinterleaver begins with AOA-clustering, 
which breaks a huge pulse sequence into several 
smaller pulse sequences according to their different 
azimuths. Then for each azimuth group 
TOA-deinterleaving is performed. See Fig.5-(a). 
AOA-clustering is very important to the whole 
algorithm, for, similar to bi-search algorithm, 
clustering pulses from the same direction into 
smaller groups greatly reduces the total processing 
time of the TOA-deinterleaving algorithm; however, 
it is out of scope of this paper and only TOA 
clustering, or TOA-deinterleaving, is discussed. 

The TOA-clustering algorithm needs two key 
parameters, which are highly dependent on the 
measure system and the radio environment. The first 
one is TOA precision (given by R.M.S error or 
maximum error) as window size used by SDIF 
forming and sequence searching process. The other 
one is pulse-missing ratio, which is given by 

 
R kk

P N N
N T PRI

=
= ∑ , (7) 

where NR is the should-be received pulse number 
when no pulse missing occurs, Nr is the actual 
received pulse number, T is the sample interval, and 
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PRIk is PRI of the kth radio which can be estimated 
when deinterleaving completes. Pm is mainly 
determined by the ESM system features and used to 
withstand pulse missing in sequence searching 
process. However, margin had to be reserved for 
TOA measurement error, when PRI-jittered radars 
are active. 

In the algorithm, the possible PRI is obtained 
when the SDIF calculation is completed, and the 
matched TOAs of a possible PRI are extracted when 
sequence searching is successfully completed. See 
Fig.5-(b, c). In this flow chart, we assume that 1) the 
max-pulse-missing ratio is 25%; 2) As a matter of 
fact, at least three pulses are required to form a 
regular PRI sequence; 3) Only one PRI estimated by 
peak-value-detection. Therefore, the deinterleaver 
deems that the estimated PRI is error when (a) we 
can not find the pulse matched the PRI successively 
for more five times, and (b) when the searching is 
over, if the number of hits is less than the expected 
pulse number determined by the PRI and the 
sample-time, Tmax. 

In Fig.5 bW is TOA difference clustering 
precision to form a histogram hit. After SDIF 
calculation, there would be cLEN clusters whose 
centers are in the vector Cs, and their bin heights in 
Bs. Moreover, the MaxPosition denotes the possible 
PRI with bin height of MaxHeight. Whenever a 
TOA difference falls into a cluster with bin height of 
B, the cluster center is replaced by the mean value of 
all the (B+1) TOA differences. 

The sequence-searching algorithm shown in 
Fig.5-(c) is divided into two matching loops. The 
first two pulses (TOAs) are to be matched in the first 
WHILE loop, then, if successful, the pulses thereafter 
are to be traced in the second WHILE loop. In both 
loops, the integer variable k denotes the number of 
missing pulses between TOAs (j) and TOAs (i), if 
they both belong to the subsequence of the estimated 
PRI. When the next pulse is found matching with 
possible PRI, the PRI value is adjusted to withstand 
TOA error and estimation error. 

4 Simulation Results 
The algorithm has been implemented in both C and 
MATLAB language. Simulation in MATLAB 
language shows it is much better than 
threshold-function algorithms. Simulations in C 
language prove that the proposed algorithm 
successfully identifies emitters from a sample PDW 
sequence in its sample interval. The following tables 
give the average simulation results of 200 times 
when implemented in MATLAB 5.3 (Table 1) and in 
Microsoft Soft Visual C++ 6.0 (Table 2) on Intel PIII 
550MHz CPU. 

Furthermore, the algorithm has been implemented 
in a TMS320C5x-based ESM system. 

Table 1 Performance in MATLAB 
Radios PRIs PMR Cost in flops True PRI False PRI

5 5 25% 8433 4 1
5 1 20% 3000 1 0

10 10 10% 15041 10 0
10 1 5% 11616 1 0

Sample Time=50ms  
Table 2 Performance in C  

Radios PRIs Sample Time Cost in ms True PRI False PRI
5 5 100ms 1.15 5 0
5 1 100ms 3.20 5 0

10 10 100ms 5.80 10 0
10 1 100ms 17.20 1 0
15 5 100ms 22.85 5 0

PMR=5%  
From Table 1, in the worst case in our approach 

spends 15041-flop, which is only 3 times lower than 
that of the best case in [4], and only 126 times lower 
than that of its worst case in [4] when only TOA 
used. 

From Table 2, even when Pm is 5%, no error 
found. Moreover, the processor time used by the 
proposed algorithm in the worst case is only fifth the 
sample time, which means that during the each 
sample duration, much time is saved for further 
analysis on individual radios.  

5 Conclusion and Further Discussion 
In this paper, we analyzed performance especially 

efficiency of early proposed deinterleaving 
algorithms by D.J. Milojevic [4], and proposed the 
simple and straightforward SDIF-based PRI 
estimation scheme. Simulation results have shown 
that the approach performs much better that that 
given by [4] (in MATLAB implementation), and the 
C Language implementation also demonstrates itself 
competent for real-time processing in ESM systems.  

Furthermore, the computation cost can be further 
minimized,  
1) if we use not only PRIs corresponding to the peak 
in SDIF but also those corresponding to the 
secondary and tertiary peaks in SDIF;  
2) if the smallest possible PRI value is already 
known, we can ignore TOA differences smaller than 
the smallest PRI in SDIF calculation. 

The approach uses only simple operations like 
addition and comparison to calculate the SDIF and 
by peak-value-detection (PVD) to obtain possible 
PRI, thus no time-consuming threshold functions are 
involved and much time is saved – due to   
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Fig.5 PRI estimation and TOA-deinterleaving based upon PVD in the SDIF 
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