
Comparative Evaluation of Decomposition Algorithms based on 
Frequency Domain Blind Source Separation of Biomedical Signals 

 
Matteo Milanesi1, Nicola Vanello1, Vincenzo Positano2, Maria Filomena Santarelli2, 

Danilo De Rossi3, Luigi Landini3 

1Department of Electrical Systems and Automation, Faculty of Engineering, University of Pisa, Italy, 
2CNR Institute of Clinical Physiology, Pisa, Italy, 3Interdepartmental Research Center “E. Piaggio”, 

Faculty of Engineering, University of Pisa, Italy. 
 

  
Abstract. In this paper we compare the performance of different algorithms employed in solving frequency 
domain blind source separation of convolutive mixtures. The convolutive model is an extension of the 
instantaneous one and it allows to relax the hypothesis of a linear mixing process in which all the sources are 
supposed to reach the electrodes at the same time. This test is carried out in the frequency domain, where the 
algorithms developed for independent component analysis can be employed with minor modifications. The 
decomposition performance of such algorithms is evaluated on simulated dataset of convultive mixtures of 
biomedical signals. 
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1 Introduction 
 Biomedical signals are means that transport 
information regarding one or more biological 
systems under study. In our data it is necessary to 
discriminate signals of interest from others that must 
be considered artifacts: these can have physiological 
origin, as muscular activity signals superimposed on 
electrocardiographic registration, or due to 
acquisition conditions, as movements related 
artifacts, caused by the displacement of the 
electrodes.  
 To recover the signals of interest, the most known 
methods are linear and nonlinear filtering techniques 
[1] adaptive signal processing [2] and wavelets 
based methods [3]. Other techniques, as principal 
component analysis (PCA) [4] and independent 
component analysis (ICA) [5] take advantage from 
multichannel data acquisition. While PCA looks for 
linearly independent components, ICA starts the 
search for sources hidden in the data under the 
hypothesis of statistical independence among them. 
 The ICA-based model assumes that each electrode 
measures an instantaneous mixture of signals and 
both the mixing process and the sources are 
unknown. Applications in removing artifacts from 
biomedical signals have been presented in several 
publications: Barros [6] utilized ICA for removing 
artifacts from ECG signals; Wachowiak [7] showed 
how ICA is able to separate artifacts from EMG 
signal while Jung [8] compared ICA and PCA for 
EEG artifacts removal. The linear ICA model does 

not account for the influence, on the mixing process, 
of the different paths from the signal sources to the 
sensors, and of the spatio-temporal dynamics of 
some signals as Anemuller [9] hypothesized for 
EEG data. 
 Thus, we used blind separation of convolutive 
mixtures by means of independent component 
analysis [5]. We choose to solve this problem in the 
frequency domain [9, 10] as this allows us to use 
fast algorithms developed for the instantaneous 
mixing problem. After decomposition, the signals of 
interest can be reconstructed back in the original 
observation space, avoiding some ambiguities 
introduced by the independent components [11, 12]. 

Different algorithms were compared throughout 
the evaluation of a performance index on simulated 
convolutive mixtures  

 
2 Methods  
 
2.1 Instantaneous ICA model 
 The basic ICA model assumes that a set of 
measurements xi(t) are originated by a linear mixing 
process of some latent sources sj(t). By neglecting 
any signal delay in the mixing process, we can 
introduce the instantaneous ICA model, 
mathematically expressed by: 
 

)()()()( 11 tsatsatsatx ninjijii ++++= KK  (1)

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp324-329)



with i=1,2,…m, j=1,2,…,n and t=1,2,…,T as we 
operate with discrete time signals. If we use a vector 
representation of [ ]T

m txtxt )(),...,()( 1=x  and 
[ ]T

n tstst )(),...,()( 1=s , we can express equation (1) in 
matrix notation x(t)=As(t) where A is called the 
mixing matrix. Both the sources si(t) and the mixing 
process, A, are unknown. The hypothesis used in 
order to extract the original sources is that they are 
statistically independent. The goal is to estimate a 
matrix W called the unmixing matrix, such that 
y(t)=Wx(t) is an estimate of the original sources 
(t)s . In the following we assume the number of 

sources equals the number of acquired signals, thus 
n=m.  
 
2.2 Convolutive ICA model in the frequency 
domain 
 The basic ICA model (1) assumes that the mixing 
process is instantaneous, meaning that every single 
component produced by original sources reaches 
each sensors at the same time. In some applications 
this seems to be a too strong assumption since the 
paths of the signals to each sensor can be different 
and the finite propagation speed in the medium can 
generate different time delays. 
 These considerations lead to introduce a 
convolution process between the original sources 

)(ts j  and the elements of the mixing matrix A, that 
becomes the coefficient of unknown FIR filters, 
with impulse response aij(t) of length L: 
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Fig.1 shows a scheme of the convolutive mixing 
process.  
 

 
 
Fig.1. Convolutive ICA model. 

 The problem can be solved in the time domain 
using natural gradient methods, or using a frequency 
domain approach [9, 10, 11, 12]. Since a 
convolution in time domain is a product in the 
frequency domain, it is possible to transform the 
convolutive mixture model into an instantaneous 
linear mixing model for each frequency bin. 
 The convolutive model is solved splitting the 
frequency domain in intervals, i.e. frequency bins, 
and applying the basic ICA model independently for 
each frequency bin. A short time Fourier transform 
(STFT) is used to collect a number of observation of 
mixtures for each bin. The one-dimensional 
sequence )(txi , which is a function of a single 
discrete variable t, is then converted into a two-
dimensional function ),( tfX i  of the time variable t 
and a frequency variable f, both discrete. 
 The window length, used in the STFT, must be 
greater than the maximum delay occurring in the 
convolutive process, that is related to the maximum 
order of the FIR filters. After this transformation, 
we get the following expression: 
 

∑
=

=
n

j
jiji tfSfAtfX

1

),()(),(  (3)

 
 Now we have as many temporal observations of 
the signal frequency content as the number of 
windows we choose. It is possible to split the 
frequency domain into a number of bins and use the 
basic ICA instantaneous model for each frequency 
bin. In this case we assume the statistical 
independence among temporal observations of the 
sources frequency contents. 
 Several approaches have been proposed in order 
to solve the instantaneous ICA model, like nonlinear 
decorrelation, maximization of nongaussianity, 
maximum likelihood estimation methods, infomax 
principle, minimization of mutual information or 
some tensorial methods. See [5] for a review. 
 As pre-processing step, before performing ICA 
both a removal of the mean value and a whitening 
operation using PCA is performed. This operation 
simplifies the estimation of the unmixing matrix W 
that becomes orthogonal with only n(n-1)/2 degrees 
of freedom instead of n2. 
 
2.3 Methods for Independent Component 
Analysis 
 
2.3.1 Maximum Likelihood Approach 
 Maximum likelihood estimation is used to find the 
parameters of a model given the data: the 
computation of the likelihood is easy when the 
probability density functions are known a priori. 
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The likelihood of the observed data, given the 
model m described in equation (1) and the sources 
described by parameters θ, can be written as: 
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where T is the number of observations. It can be 
found that the likelihood is a function of the 
unmixing matrix W and can be written as 
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where wi are the columns of W so that xwT

i is an 
estimate of si. 
 In order to maximize the log-likelihood function 
Bell and Sejnowski [13] proposed a gradient 
approach such that at each iteration t the unmixing 
matrix W, starting from an initial random guess, is 
updated as follows 
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where µ is the learning rate: the unmixing matrix at 
each step is changed to maximize the cost function, 
i.e. the log-likelihood of the data. The derivative in 
the right side can be written as  
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where the nonlinear function f(·) is used to 
parameterize the probability density functions of the 
unknown sources: in particular 
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2.3.2 Natural gradient 
 Amari et al [14] introduced an approach related to 
the principle of relative gradient that simplifies the 
likelihood maximization approach. This method 
brings to the Natural Gradient algorithm that can be 
obtained by multiplying the right hand side of 
equation (7) by WTW. It is expressed by the 
following learning rule : 
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where µ is the learning rate, Z can be I or 
diag(f(y)yT) and f(.) is a nonlinear function related to 
the probability density function of the sources we 
are interested in. This procedure must be repeated 
until convergence is reached and it can be 
implemented in on line and batch versions. The 
nonlinearities proposed for the natural gradient 
algorithm are f(y)=-2tanh(y) for supergaussian 
components and f(y)=tanh(y)-y or f(y)=-y3 for 
subgaussian distributed ones.  
 
2.3.3 Maximization of Nongaussianity 
 Another approach to find the independent 
components is based on the maximization of 
nongaussianity. Negentropy, defined in equation (9), 
is employed as measure of non gaussianity.  
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where H(y) is the entropy of the y variable and ygauss 
is a Gaussian variable with the same covariance as 
y. In order to evaluate negentropy, higher order 
cumulants can be approximated by means of 
expectation of non quadratic functions F(y). With 
this approximations equation (9) can be written as 

{ } { } 2])()([)( νyy FEFEJ −∝  where ν  is a 
gaussian distributed variable with the same variance 
as y and {}⋅E  is the expectation operator. Hyvarinen 
[15] proposed a fixed point algorithm for 
performing ICA of instantaneous mixtures, known 
as FastICA. 
The learning rule employed by FastICA for the 
research of the independent components is: 
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where f(⋅) is a nonlinear function used in order to 
take into account higher order statistics of the data. 
This learning rule is applied, at each algorithmic 
step, to each column of W and is followed by a 
symmetric Gram-Schmidt orthogonalization of W. 
The nonlinear function can be chosen among 

)tanh()( 1yy af = , )2/exp()( 2yyy −=f  or 
3)( yy =f . The FastICA algorithm can separate 

components belonging to different probability 
density functions, like both super- and sub-gaussian 
with the same nonlinear functions. 
 The fixed point scheme can be applied also to 
maximize the likelihood. From equation (10), it is 
possible to derive another symmetric fixed-point 
algorithm: 
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where { })( iii yfyE−=α  and { }( ))('/1 ii yfE+−= βD  
with ( ){ }iii yfyE−=β . 
 This last learning rule seems very similar to the 
natural gradient algorithm but, instead of a constant 
learning rate µ , an optimal step size D is applied. 
Moreover the term αi accounts for the super or sub-
gaussianity of the independent components. 
 We have to point out that all the above algorithms 
must be modified since we are working in frequency 
domain and we are dealing with complex numbers: 
this means that the transposition operator must be 
changed into an Hermitian operator and the 
nonlinearity function must be adapted to the 
frequency domain too. For example f1(y)=tanh(y) 
and f2(y)= tanh(y)-y  become in the complex domain 
[10]: 
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 The centering and prewhitening operations are not 
altered working with complex numbers. 
 
3 Simulation experiments  
 Three frequency domain ICA algorithms were 
tested on simulated convolutive mixtures of 
biomedical signals downloaded from the PhysioNet 
database [16], which is standard for testing ECG 
algorithms. The methods under analysis were the 
ones described in equations (8), (10), (11) discussed 
in paragraphs 2.3.2 and 2.3.3. For each method the 
nonlinearities seen in equation (12) were used. The 
sources vector )(ts  is composed by real and noise-
free ECG, )(1 ts , and EMG, )(2 ts . The EMG 
recording is the surface registration of the chin 
muscles activity and the ECG signal is the 
precordial lead V5. Both the signals were sampled 
at 250 Hz. The FIR filters )(kaij  of the mixing 
matrix A(t), introduced in equation (2) represent the 
effects produced by each source )(ts j  in the 
detected signals )(txi . The elements of the mixing 
matrix were designed to take into account possible 
time delays that may occur from the source origins 
to the electrode and the acquisition specifics of each 
channel. Hence, a11(t) was a 20 coefficient low pass 
filter with cut off frequency f1=50Hz followed by 10 
zeros, while a12(t) was a time shifted version of 
a11(t) with lower gain. In the same way a22(t) was a 
high pass filter with cut off frequency f2=10Hz and 
a12(t) was a time shifted version of a22(t) with higher 
gain.  
 Fig.2 shows a frame of 4 seconds of the original 
sources )(ts , and the detected signals )(tx , obtained 

by applying equation 2 to )(ts  with the filters 
described above. 
 

 
             (a)                 (b) 
 
Fig.2. (a) Source signals: noise-free ECG and EMG 
recording. (b) Simulated convolutive mixtures  
 
 The convolutive mixtures were analyzed by the 
frequency domain approach. A STFT was applied to 
the data matrices )(tx , using a Hamming window of 
the same length of the FIR filter while the overlap 
between each window was 90%. This allows the 
algorithm to have a resolution ( )cTNf *1=∆ , 
where N is the number of points of the FIR filters 
and Tc the sampling period. The ICA analysis was 
carried out in the frequency bins included in the 
interval between f1 and f2, that is were the two 
signals really overlap. Outside this interval the 
simulated acquired channels are left unchanged. The 
total number of frequency bins included in the 
analysis, with a frequency resolution of f∆  is six. 
 In general, the accuracy of time domain ICA 
algorithms can be measured using the performance 
index expressed in [5] for a nxn instantaneous 
mixing matrix A: 
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where pij is the ij-th element of the matrix P=WA. 
 P would be a permutation matrix in the ideal case 
of perfectly separated sources. The value of E is 
always positive and it increases as statistical 
performance of a separation method grows worse. 
The minimum is zero and is achieved when P is a 
permutation matrix.  
 The presence of a normalization factor, together 
with the absolute value operator, assures that there 
are not any scale and phase indeterminacies: thus 
this error index can be extended to the complex 
domain without any modifications. This error index 
was employed to evaluate the separation capability 
of different ICA algorithms in each frequency bin 
where the analysis was carried out. We obtained a 
number of matrices P equal to the number of the 
points in which the discrete time Fourier transform 

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp324-329)



of the matrix A was represented, that was the same 
of the original FIR filters length. 
 Before starting with independent components 
research, a whitening step was performed as 
explained in the previous section. After each 
iteration, a symmetric Gram-Schmidt 
orthogonalization was applied to the unmixing 
matrix.  
 Since ICA algorithms look for the unmixing 
matrix starting from initial random guesses, the 
results may be depend upon this initial value: in 
order to have statistical reliability, the experiment 
was repeated 30 times for each bin, changing every 
time the initial value of the unmixing matrix. 
Whiskers graphs of the accuracy were realized, as 
depicted in Fig.3. The rectangular boxes have lines 
at the lower, median, and upper quartile values. The 
whiskers extends to the most extreme data value 
within 1.5 times the height of the rectangle of the 
box. Outliers are data with values beyond the ends 
of the whiskers and are denoted by small crosses. 
The number of iterations was fixed to 50 for each 
trial. 
 

 
 

 
 

 
 
Fig.3. Error indexes of the algorithms in a set of 
frequency bins. The abbreviation NG stands for 
natural gradient algorithm, equation (8); FPMN for 
fixed point algorithm for maximization of 
nongaussianity, equation (10); FPML for fixed point 

for maximum likelihood estimation, equation (11). 
The suffix 1 means that we are employing f1(y) as 
non linearity; while the suffix 2 stands for f2(y). 
 
4 Discussion  
 The performance index expressed in equation (13) 
and estimated for the different algorithms is related 
to the accuracy in solving the convolutive mixtures 
model. The algorithms performances were tested in 
each frequency bin taking into account both the 
mean value of the index and its variability achieved 
from different trials on the same dataset: this step is 
necessary because of the random initial guess of the 
algorithms. 
 The algorithm, that showed the best stability in the 
results, was the fixed point for the estimation of the 
maximum likelihood, independently from the 
nonlinearity used.  
 The best performance, in almost every frequency 
bins, were exhibited by the fixed point algorithm for 
maximization of nongaussianity, using the non 
linearity f2(y): this algorithm seems to slightly 
outperform the fixed point for the estimation of the 
maximum likelihood and the natural gradient one, 
both with non linearity given by f2(y). The worst 
results were shown by the natural gradient algorithm 
and fixed point for maximum likelihood estimation 
with nonlinearity given by f1(y). 
 Note that the source signals under examination 
were an ECG and an EMG recording. The results 
seem to indicate that the STFT of the underlying 
sources are well separated using a nonlinearity 
suited for subgaussian distributed components, that 
is f2(y). The only exception is the fixed point 
algorithm for maximization of nongaussianity that 
works quite well independently from the 
nonlinearity, that can be almost any smooth 
function, as stated in [5]. 
 
5 Conclusions 
 An algorithm for blind source separation of 
convolutive mixtures of biomedical signals was 
introduced: the algorithm works in the frequency 
domain exploiting the ICA instantaneous model in 
each frequency bin. 
 Several algorithms for instantaneous ICA were 
tested to individuate the one giving the best 
performances within the convolutive mixtures 
separation approach proposed. The source signals 
under examination were an ECG and an EMG 
recording. An index of accuracy for the different 
algorithms was suggested. The results seems to 
indicate that best performance was achieved by the 
fixed point algorithm for maximization of 
nongaussianity. Both the methods for maximum 
likelihood estimation given by Amari’s natural 
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gradient algorithm and by Hyvarinen’s fast fixed 
point approach, give very similar result, if a 
nonlinearity for estimation of subgaussian 
components is employed. 
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