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Abstract: - This research deals to introduce a new method for generalizing the well-famed Quantitative 
Feedback Theory (QFT) in granting robustness of Feedback linearization on nonlinear systems. In this new 
scheme, first applying feedback linearization, with selecting operating points in domain of system parameter's 
variations, nonlinear systems replaced with linear systems, then robust controller is designed for this linearzed 
system to control real nonlinear system. Weather, after feedback linearization, robust controller easily can be 
designed for this system to cope with uncertainties on practical nonlinear system. Finally this new technique is 
compared with Linear Quadratic Regulator (LQR). 
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1   Introduction 
Feedback linearization is a technique on nonlinear 
systems control, which transforms all or part of 
dynamical systems to linear system(s) described by 
algebraic equations. In other words, linearization 
hypothesis transforms main model of the system to a 
simple form of equivalent models. Hence, it can be 
used in developing robust or adaptive controllers for 
MIMO nonlinear systems. The main idea behind 
using feedback from all linear systems is based on 
some known efficient design techniques which are 
used to finalize the controller design. One of the 
disadvantages of the feedback linearization is lack of 
enough robustness in presence of system parameter's 
uncertainties, in such a way with varying the 
parameters in system, the resulted responses won't 
be desired and may be unstable. So, in nonlinear 
systems with parameter uncertainties, feedback 
linearization can linearize the nonlinear system 
around some of its operation points of the parameter 
variation's domains. On the other hand, the nonlinear 
system will not become linear perfectly or even may 
remain nonlinear. That is why the designed 
controller couldn't present an appropriate response 
except in one point or in some points of parameter's 
variations domain which the system has been 
linearized in its neighborhood. In this article, a new 
method will be presented defining "Robust Feedback 
Linearization”. This method is based on QFT in the 
design of robust controllers for nonlinear systems. It 
is based on the of Schouder's fixed point theory, 
which has been presented by Horowitz. Through 

combining this theory with the feedback 
linearization, an algorithm will be designed to 
control nonlinear systems. The advantage of this 
procedure is that after linearization with feedback 
we will be faced with a linear system. Firstly, it 
seems possible either to design the controller by 
using some other methods such as Linear Quadratic 
Regulator (LQR), and then make it robust enough by 
this method, or to design a robust controller for this 
system after direct linearization with feedback. 
 
 
2   Linearization Through Feedback 
Two types of linearization through feedback are as 
follows. 
 
 
2.1 Input State linearization 
Suppose that the control input u , is posed to the 
following single input nonlinear system ),( uxfX =& . 
This problem can be solved during two steps using 
linearization techniques. Firstly, finding a state 
mapping xzT →: , the system equation should be 
transformed into uzgzfZ )()( +=& . Then the 
transformation of ),( vzuU = is regarded to 
transform system dynamics in to linear and time 
invariant dynamics alike buAzz +=& . Now, the 
custom linear design techniques can be used to 
design u . It ought to noted that 1, −TT  should be 
continues and derivative. This type of mapping is 
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called Diffeamorphism.[1,2]  
 
Definition: The nonlinear system 

uxgxfxRDfRDg n
x

n
x )()(,:,: +=→→ & is 

called input-state linearizable, if a diffeamorphism 
mapping n

x RDT →: exists such that 

)( xz DTD = includes the origin and the variable 
transformation )(xTz =  transforms the above 
system  as :        )]()[(1 xxxBAzz αβ −+= −&              
Which A and B are controllable and )(xβ is non-

singular in domain of all rate of xDx∈ . The above 
expression indicates that the main condition to make 
the nonlinear system input-state feedback 
linearizable is that the rates TBA ,,,, βα  satisfy the 
partial differential equations which are as follows: 
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 Without reducing the generality, regarding the 
canonical form of cc BA ,  for matrices BA, we will 
have: 
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By replacing the statements of (3) in (1), we will 
have: 
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the above equation indicates that the relation 

nTT −2 is an obvious function of the first element 

1T . Therefore, it seems necessary to find the 
function )(1 xT in such a way, it satisfies the 
following statements: 
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Afterwards, if the function )(1 xT can be calculated 
so that it makes the (5) balance, then βα ,  will be 
determined as follows: 
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2.2 Input-Output Linearization 
Since special certain output variables are considered 
such as tracking problem, the state space model 
would be indicated in the state form and output 
equations. In this situation, the mentioned method in 
the linearization of state equations doesn’t 
necessarily result to output linearization. Consider 
the following system as follows: 
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Where hgf ,,  in the field of nD ℜ⊆  are smooth 
sufficiently. Supposing )()( xhx =ψ , we will have: 
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If 0)(][ 1 =
∂
∂ xg

x
ψ

is satisfied, then we will have: 
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And after that the second derivate of y  can be 
obtained as follows: 
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Next, if 0)(][ 2 =
∂
∂

xg
x
ψ

be satisfied, we will have: 
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By repeating this progress, it is resulted that if 
)()( 1 xxh ψ=  satisfies (5), then u will not appear 

in the equations )1(,...., −nyyy & except in equation 
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)(ny as follows: 
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In such a situation, the input-output linearization 
system conforms to the following control rule: 
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If )()( 1 xxh ψ= satisfies the following equations in 
interval of the rates nr ≤≤1  we have: 
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Then )(ry will be equal to: 
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And the control rule, which can be formulized as 
follows: 

vyvxf
x
r

xg
x

u rr

r
=⇒+

∂
∂

−

∂
∂

= )(])([
)(

1 ψ
ψ

   (16) 

linearizes the input-output mapping as a chain form of 
linear uy r =)(  integrators. In this case, the constant r 
is called degree of relation in the system where 

,...}2,1,0,1,2{.. −−∈r . If the degree of relation is n , then 
the system will be both input-state linearizable and 
input–output linearizable.[1,3] 
 

3 Design of Controller through the 
Quantitative Feedback Theory 
Because of some uncertainties existence in system 
modeling, input disturbances in practical systems, and 
incoming input disturbances and uncertainties into 
process of system designing, controllers are required 
that in interval of all uncertainties at the model of the 
system and unknown disorders meet the 
characteristics of desired closed loop system, input 
tracking, removing disturbances, noise and etc. One of 
the efficient and reliable methods which can satisfy 
the above conditions is to use QFT in designing robust 
controller, which has been presented by Horowitz for 
the linear and time-invariant SISO system. In this 
paper, the robust controller has been totalized for 
nonlinear plants. 
  

3.1 Quantitative Feedback Theory 
QFT is an equipped theory that indicates how to use 

the feedback to obtain the desired system reaction in 
spite of uncertainties in the system model and 
disturbances. These two factors are modeled in the 
QFT as follows: 
1) Sets }{ RR T=τ  from desired input-output 
tracking statement and sets }{ DD T=τ from desired 
statements for removing the disturbances and 
disorders. 
2) Sets }{pP = from the change of system 
operating points. 
Generally, QFT uses the two-degrees-of-freedom 
structure regarding Fig.1. The main aim is designing 
the controller G and the prefilter F so that in the 
domain of all system variations, the control 
proportions RT and DT , lie in the set of Rτ and Dτ   
 
 
 
respectively [5, 6, 7]. 
 
 
 
3.2 Design of the Controllers through QFT  
Method for Nonlinear Systems 
In design of the controller procedures for nonlinear 
system, the use of linearization in some cases is 
inevitable. Through the local linearization method, 
utilizing some robust controller designing method 
such as QFT technique, the uncertainty of a 
nonlinear system may be replaced by a collection of 
uncertain linear and time-invariant systems.  
The main idea in design of the robust controller 
through the QFT method for a nonlinear system, is 
transforming of the nonlinear system into an 
equivalent linear system using feedback 
Linearization Theory in addition of disturbances on 
output with consider to the desired output properties. 
In fact, the deference between nonlinear systems and 
the obtained equivalent linear system is regarded as 
disturbances in the equivalent linear system output. 
To better understanding an example is planned as 
follows. 
 
Example.1: Consider the indicated system in Fig. 2, 
where N is a nonlinear (SISO) system of a known 
member in }{N , and }{y  is a collection of 
permissible output responses. Also the primary 
conditions on y have been indicated. Our purpose is 
to design G and Fr so that the system output for all 

}{NN ∈  lies in the collection of }{y .  
 

Fig. 1.  The fundamental QFT design
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Fig. 2. Typical block diagram of a SISO Nonlinear system    
(ic: initial conditions) 

 
Lemma 1: Regarding the following mapping 
on }{y : 

GP
dyGFrP

y
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i

yNyN dyuPNuy ,,, ++==           (18)
  
Where for any y through equation y=N.u, an u is 
determined. The (18) is used to select a linear time-
invariant system ( yNP , ) and a disturbance signal 

( yNd , ). Next, the mapping, )( yφ , can be obtained 
from (17). If the obtained mapping has a constant 
point for any }{NN ∈  in }{y , the G and rF  will be 
a type of solution for the intended problem. 
According to the above lemma, a designing process 
for the proposed problem is as follows: 
1. For any }{NN ∈ and }{yY ∈ , yNP ,  and yNd ,  must 
be selected such that the (24) would be satisfied.  
2. G and rF should be designed in such a way the 
mapping, )(yφ  would consist a constant point 
in }{y . 
In this process, two main questions are posed: 
a. How to select the pair yNP ,  and yNd , ? 
b. How to guarantee that the obtained mapping has a 
constant point in }{y ? 
To answer these questions, the use of Schouder's 
fixed point theory which is based on the following 
lemma seems usefull. [7, 5, 2] 
 
Lemma 2: Suppose that }{y is a complete and 
closed set in the Banach space, and φ  is a mapping 
from }{y to itself. In such a situation, φ  has a fixed 
point in }{y .  
Based on the above lemma, if }{y  is complete and 
closed set in Banach space, then the G and rF  are 
such that the mapping )(yφ , is a smooth mapping in 
interval of all }{NN ∈  from }{y to itself. In such a 
condition, the G and rF  will be a solution of 
Example 1. 

According to the mentioned conditions If the pair 

yNP , and yNd ,  are selected correctly, Example.1 will 
be transformed to the following problem. 
 
Example 2: Consider the indicated system in Fig.3, 
in which dP,  from the set of },{ dP are linear time-
invariant system (LTI) and disturbance respectively. 

)(0 sy is a nominal output and )(we is an index 

function. Design the controllers G and rF  such that 
for all the pairs of },{ dP , the system be stable and 
the system output be limited as follows: 

)()()( 0 ωωω ejyjy <−     (19) 

 
Fig.3. The schematic of LTI feedback in place of main system 

 
So, the main step in the solution of the mentioned 
problem is calculation of the bounds )( ϖjG through 
(19), which is a solution of the following inequality. 
( rF  is supposed to be obvious). 

},{,);()(
1 0 dPdPjejy

PG
dPGFr ∈∀≤−

+
+

ωω  (20) 

A suggested method for solution of the above 
inequality is to select a medium state 
regarding 00 ,dP , and to achieve rF so that the left 
side in (20) deals to zero. 
Clearly, we have: 

GP
dy

yFr
0

00
0

−
+=            (21) 

In this situation, (20) is transformed as follows: 

},{,);(
1

/)( 0000 dPdPe
PG

ydPPdy
∈∀<

+
−+−

ω  (22) 

Finally, the design steps would be summarized as 
follows: 
a. Use (22) to determine the bounds on )( ωjG . 

b. Design the controller )(sG such that it satisfies 
obtained bounds and the calculated rF  from (21). 
 

4 Combining QFT and Feedback 
Linearization 
As indicated throughout the feedback linearization, a 
nonlinear system can be transformed to a linear 
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system and complete the design step throughout the 
designing methods for the linear system. But, the 
important subjects in the feedback linearization are 
the uncertainty parameters in the nonlinear system, 
which cause the linearization error. In some cases 
when the feedback linearization is designed in 
certain operating point of system parameters, the 
nonlinear system is linearized only in this point of 
parameter's variations domain, and in other points 
the system doesn't linearized perfectly or it may 
never become linear. Hence, in spite of existence of 
some uncertain parameters in the nonlinear system 
and the linearization error, the designing of a robust 
controller throughout feedback for this type of the 
systems after linearization is required. Due to this 
purpose, we can use QFT to design the robust 
controller according to the mentioned method. 

In this idea, the nonlinear system is firstly linearized 
by the feedback linearization in some operating 
points of the parameters range. Then, the 
linearization error in other points of the system 
parameters throughout QFT is regarded as the 
collection of disturbances in the output of the 
linearized system. Finally, the robust controller is 
designed for the proposed system in spite of these 
disturbances. 
Based on the theory and Lemmas, which are 
indicated in section 3, it is guaranteed that the 
obtained response meets the desired output in the 
range of all system parameter's changes. 
 
Example 3: Consider to the Vanderpol nonlinear 
system which contains the parameter uncertainties 
and regarding the nominal system parameters as 
follows: 

]4,1[],1,2[],4,1[],3,1[
)1( 2

∈−∈∈∈
=+−+

KEBA
KuEyByyAy &&&       (23) 

4,2,1,10 =−=== KEBA          (24) 
Using the feedback linearization, if the input is 
considered as (25), then the above system will be 
linearized perfectly in the nominal point and its 
equation will be as (26): 

)(1
00

2
00
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yEyAyyBAv
K

u +−+= &&          (25) 

vy =&&              (26) 
For this system, the design steps are accomplished 
throughout two methods:  
a. Designing the state feedback throughout LQR. 
b.Designing the controller throughout robust 
feedback linearization according to the introduced 
method. 

4.1 Designing of the Optimal State Feedback 
The transfer function of the linearized system after 
linearization with the feedback is as (26), where the 
above state space system's equations are as follows: 

DvCXy
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25.00
00

Q is satisfied, the 

values of coefficient matrix K, in the control rule of 
optimized feedback u=-KX, will be obtained as: 

]8417.09407.5[=K  
The results of simulation throughout exerting of the 
above control rule is indicated in Fig. 4, which 
shows the output of closed loop system in domain of 
all system parameters changes. 
As indicated in Fig. 4, it is observed that properties 
of the system output is ideal in the nominal point 
and in the other points doesn’t meet ideal expected 
properties. In other word, the feedback linearization 
isn’t robust in presence of the system parameters 
variations. The results of simulation throughout 
exerting the above control rule is indicated in Fig.4, 
which shows the output of closed loop system in 
domain of all system parameters changes. In the 
other word the feedback linearization isn’t robust 
enough in presence of system parameters changes. 
 
 
4.2 Designing the Controller throughout  
QFT  
The transfer function of equivalent linear system is 
obtained from (26) and for all parameter's changes 
the regarded disturbance which is the same 
linearization error determined by (25), (23). 
Know, concerning these disturbances in the output 
of linear system in (26) and throughout the 
quantitative feedback theory, the robust controller is 
designed. Fig.(5) shows the bounds and the type of 
gain function forming for nominal loop in Nicholes  
diagram. Fig.(6) shows step response for all 
parameter variations. Finally, the controller G and 
prefilter F are obtained as follows: 
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Conclusion 
Verifying Fig.(6) show that using Robust Feedback 
Linearization, system output  placed in the desired 
parameter bound rate. According to this research it 
can be concluded that it is possible to make the 
controller to be more robust and reliable in a good 
range of parameter uncertainties and disturbances on 
nonlinear systems. Other important advantages of 
this new method listed as follows: 
1. This new method is useable and benefit in 
different types of systems. 
2. It includes all parameter's uncertainties in design 
procedure. 
3. Achieving a fixed structure controller. 
4. High robustness in structure of controller. 
But because of fixed structure of controller the main 
disadvantages of this new method can be 
summarized in high amount of control energy as 
shown in Fig.(5).In such conditions using Nero-
Fuzzy theory, it is possible to design better 
controller to find a better position in loop shaping 
step. 
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Fig. 5.  The bounds and nominal loop gain. 

Fig.6. Closed loop system output for all uncertainties and 
variable changes in Robust Feedback Linearization. 

Fig. 4.  The output of the closed loop system in presence of the 
parameters' variations and uncertainties using LQR controller   

and the typical bounds and nominal loop function. 
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