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Abstract: In this paper, split step wavelet Galerkin method (SSWGM)is proposed for solving underwater wave propagation
in range-independent fluid/solid media. Parabolic equation model is applied for transforming elliptic wave to parabolic wave
equation that enable us to use marching approaches in numerical algorithms. Wavelet Galerkin method is used to discretize
the depth operators by using 1-periodic Daubechies scaling basis as shape functions. This discretization leads to circulant and
bandlimit system which can be solved by fast Fourier transformations and this improves the accuracy and cost of computation.
The numerical solution of SSWGM is applied for deep and shallow water environment involving water column over bottom.
To evaluate the efficiency of the proposed method, some simulations are demonstrated and the usefulness of SSWGM is
highlighted through them.
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1 Introduction

For many years, parabolic equation techniques have been
used widely in computational acoustics. The main rea-
son of this attention is that a parabolic equation (PE)
can be solved by marching method and therefore requires
less computational efforts than full elliptic wave equation
model [1], meanwhile, the PE methods have fast conver-
gence within a reasonable cpu-time and memory [2]. PE
model is based on factoring elliptic wave operator into a
product of incoming and outgoing operators and assuming
the outgoing energy dominates [3].

Several numerical techniques are applied in computa-
tional underwater acoustics, that have progressed from nar-
row angle methods to wide angle based methods. Among
them only the finite difference, finite element and split step
techniques have gained widespread use.

The methods based on finite difference and finite
element approaches are used for wide angle, bottom-
interacting situation environments, while, many practical
ocean-acoustics of naval interest are long range, narrow an-
gle propagation with negligible bottom interaction, Thus
they can be modeled efficiently by split step based tech-
niques especially split step Fourier method (SSFM) [4, 5]
that employs fast Fourier transform (FFT) at each prop-
agation step [6]. The strong speed and density contrasts
encountered at the water-bottom interface adversely affect
the efficiency of the above mentioned computational tech-
niques [7, 4]. For maintaining the efficiency of algorithms,
it requires to use excessively fine grid for range and depth
segments. For example Finite element formulation requires
the step size be comparable with the wavelengths which is

very small in high frequency.

In this paper, we develop the use of split step wavelet
Galerkin method (SSWGM) as a projection method for nu-
merically solving PE model of underwater wave propaga-
tion with free surface and absorbing layer bottom bound-
ary condition. Wavelet expansions may be viewed as a lo-
calized Fourier analysis with multiresolution structure that
automatically distinguishes between smooth and singular
region of discontinuity at water-bottom interface [8]. Ex-
pansion of such environment by Fourier expansion requires
a large number of terms with complexity O(N log2N),
while, In such regions, wavelet coefficients are employed
by the complexity O(N) with a few number of coeffi-
cients in comparison with Fourier based methods, here, N
is the number of discretization points. For more informa-
tion about wavelets and their properties readers are referred
to [9, 10, 11, 12, 13].

Incorporating wavelet Galerkin depth discretization
with respect to 1-periodic compactly supported Daubechies
scaling functions [14] and split step Pade approximation
provide an fast and accurate algorithm so-called SSWGM.
In matrix representation, applying this scaling basis func-
tions for depth Galerkin discretization leads to differential
matrix that is bandlimit and circulant [15]. Using of circu-
lant matrix representation, makes it possible to execute Fast
Fourier Transform (FFT) in matrix multiplications so that
this substitution, efficiently increase the calculation speed
and decrease complexity of computations to O(N).

This paper is organized as follows: In two first sec-
tions, we give brief overview about PE algorithm and
Daubechies wavelet familiy respectively. Section 3, de-
rives the SSWGM and finally in section 4, numerical imple-
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mentation of proposed method for two test problems corre-
sponding shallow and deep water, are presented.

2 Parabolic Approximation

Consider a range-independent acoustic medium, bounded
above by a free surface at z = 0 with a sound pro-
file that supports large range propagation (for r −→ ∞).
The acoustic pressure p(z, r) due to harmonic point source
with frequency f located at (zs, 0) with time dependence
exp (−iωt) can be obtained for r > 0 as

1
r

∂

∂r
(r
∂p

∂r
) + ρ

∂

∂z
(ρ−1 ∂p

∂z
) + k2

0N
2p = 0, (1)

with complex refraction with the complex refraction index

N(z) = n(z) + iα(z)/k0,

where, k0 = 2πf/c0 is the reference wave number, the
notations c(z), ρ(z) and α(z) denote local sound speed,
density and attenuation respectively [16, 17].

By assuming the acoustic sound wave propagates
along principle direction, the sound field can be separated
as a slowly varying envelope and a fast oscillating phase
term, i.e.,

ψ(z, r) =
√
k0rp(z, r)e−ik0r (2)

where, this envelope function varies ψ slowly with r. Sub-
stituting the above form into equation (1), the wave equa-
tion for k0r � 1, is split into two terms that governs the
evolution of the forward and the backward sound wave of
ψ [7]. By neglecting backward sound waves, the one-way
equation can be obtained as follows

∂ψ

∂r
= ik0(Q− 1)ψ, (3)

where, Q =
√

1 +X and

X = k−2
0 (ρ∂z(ρ−1∂z)) + V (z),

with the complex valued V (z) = N2(z) − 1. To solve
equation (3), the square root operator Q need to be approx-
imated. The standard approximation based on Taylor ex-
pansion is as √

1 +X ∼= 1 +
1
2
X, (4)

This yield the standard parabolic equation (SPE) which has
been shown to be valid only for propagation angle 15−25◦

of horizontal [4].
The formal solution of (3) at the marching step r+∆r

can be written as

ψ(z, r + ∆r) = eik0∆r(−1+Q)ψ(z, r) (5)

In order to implement the exponential operator of equation
(5), we apply the Pade-series
Pade-product approximation given first by Collins [7]

eik0∆r(−1+Q) ∼= 1 +
m∑

j=1

aj,mX

1 + bj,mX

∼=
m∏

j=1

1 + cj,mX

1 + bj,mX
, (6)

The aj,m, bj,m and cj,m are known as Pade primes. The
values of Pade primes can be obtained by matching the first
two m derivatives of the square root function with those
of the Pade expression at X = 1. These coefficients are
real valued. In this paper, by assuming that the square
root approximation maps the real axis into itself, it dose
not need to be applied complex valued Pade approximation
for square root approximation [18].

Substituting Pade series (6) into (5) for all j =
1, 2, . . . , m leads to the split step Pade (SSP) solution,

ψ(r + ∆r) = ψ(r) +
m∑

j=1

aj,m(1 + bj,mX)−1Xψ(r), (7)

By defining, m functions qj as

qj(r + ∆r) = aj,m(1 + bj,mX)−1Xψ(r).

Thus, equation (7) can be written as

ψ(r + ∆r) = ψ(r) +
m∑

j=1

qj(r + ∆r), (8)

For simplicity in (7) and (8), we substitute ψ(z, r) by ψ(r).
For one term only from the Pade series, the square root
operator can be written as wide angle parabolic equation
(WAPE) of Claerbout,

√
1 +X ∼= 1 + p1X

1 + q1X
, (9)

where, p1 = 3
4 and p2 = 1

4 .

3 Daubechies Basis functions

In this section, a brief introduction is given about the con-
structions and basic properties of wavelets. More detailed
discussion can be found in [14].

Given a positive integer1 N , consider a set of constants
ak that satisfy the following four properties

ak = 0 for k ∈ {0, 1, . . . , 2N − 1}, (10)

2N−1∑
k=0

ak = 2, (11)

1The number N is called genus of wavelet.
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2N−1∑
k=0

(−1)kkmak = 0, for 0 ≤ m ≤ N − 1, (12)

and for 1 −N ≤ m ≤ N − 1, we have

2N−1∑
k=0

akak−2m = 2δ0m, (13)

In particular, for N = 2

a0 =
1 +

√
3

4
, a1 =

3 +
√

3
4

,

a2 =
3 −√

3
4

, a3 =
1 −√

3
4

.

For eachN ≥ 1 and the corresponding constants ak are de-
fined in (10-13), the so called dilation and wavelet equation
are defined for every z ∈ R as

φ(z) =
2N−1∑
k=0

akφ(2z − k) and

ψ(z) =
2N−1∑
k=0

bkφ(2z − k), (14)

where, bk = (−1)ka2N−k−1. The function φ is called scal-
ing function that can be determined by the following itera-
tion method

φn+1(z) =
2n−1∑
k=0

akφ
n(2z − 1), n = 0, 1, . . . , (15)

where φ0 is the unit indicator function. The scaling func-
tion φ and wavelet ψ in equation (14) are compactly sup-
ported

supp (φ) = supp (ψ) = [0, 2N − 1]. (16)

For j, k ∈ Z, the translates of scaling function φ define an
orthogonal subspace

Vj = closure ( span{φj,k : k ∈ Z} ), (17)

and the orthogonal complement of Vj in Vj+1 is defined as

Wj = closure ( span{ψj,k : k ∈ Z} ), (18)

where,

φj,k = 2j/2φ(2jz − k) and ψj,k = 2j/2ψ(2jz − k),

with the following support

supp (φj,k) = supp (ψj,k) = [
k

2j
,
k + 2N − 1

2j
].

One can easily verify the following properties of spaces Vj

and Wj for j ∈ Z

Vj−1 ⊂ Vj , Wj−1 ⊂Wj and Vj+1 = Vj ⊕Wj ,

where X ⊕ Y denotes the orthogonal direct sum of Hilbert
spaces X and Y . Note that the closures of

⋃∞
−∞ Vj and⊕∞

−∞Wj are dense in L2(Ω), which is the space of square
integrable functions on domain Ω. The space {Vj}j∈Z is
referred to as multiresolution analysisfor L2(Ω).

Daubechies wavelets that are defined on the whole of
real line, can be periodized with a Poisson summation tech-
nique. For j, k ∈ Z, the 1-periodic scaling function is de-
fined as

φ̃j,k(z) =
+∞∑

n=−∞
φj,k(z + n).

and the 1-periodic wavelet as

ψ̃j,k(z) =
+∞∑

n=−∞
ψj,k(z + n).

The 1-periodicity can be verified as

φ̃j,k(z + 1) = φ̃j,k(z) and ψ̃j,k(z + 1) = ψ̃j,k(z) (19)

These periodic wavelets posses many of the same proper-
ties of their non periodic forms. Because of periodization,
these basis functions does not commute with dilation and
can not be generated by repeated translation and dilation of
the mother basis functions.

Periodic functions introduced in (19) construct peri-
odic multiresolution analysis {Ṽj}+∞

j=−∞ for L2([0, 1]).
For J ∈ Z, a function u ∈ ṼJ can be expanded as

uJ(x) =
+∞∑

k=−∞
uJ,kφ̃J,k, (20)

where uJ,k =
∫ +∞
−∞ u(z)φ̃J,k(z) dz. By starting from rep-

resentation of a function in a coarse subspace at level j0,
higher resolution can be obtained by adding the spaces W̃j

up to a higher level J

uJ(z) =
2J−1∑
k=0

uJ,kφ̃J,k +
J∑

j=j0

2J−1∑
k=0

dJ,kψ̃J,k. (21)

A different kind of approximation for u ∈ VJ , well known
as sampling interpolationis performed as

uJ(z) =
2J−1∑
k=0

u(
k

2J
)φ̃J,k, (22)

More details about approximation properties (20-22) is re-
ferred to [14].

Finally, for any u, ν ∈ L2(Ω), the inner product is de-
fined as

(u, ν) =
∫

Ω

uνdΩ,
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Figure 1: Daubechies scaling and wavelet functions for N = 6

with support on [0,5].

3.1 Split Step Wavelet Galerkin Method

Let us, briefly apply the wavelet Galerkin method for low-
order PE (3) [21]. Substituting (4) in equation (3), gives
the narrow angle or SPE of Tappert as

∂ψ

∂r
= − ik0

2
Xψ. (23)

Now, the depth domain Ω = [0, zb] is covered with a set of
non-coincident dyadic points {z0, z1, . . . , zN}, where N is
a positive integer.

Multiplying both sides of the (23) by a weighted func-
tion ν(z) and integrating over domain Ω gives

∫
Ω

[ψr +
ik0

2
Xψ]ν(z)dz = 0. (24)

The equation (24) is called weak form of (23). In wavelet
Galerkin depth discretization, the approximation space of
ψ is considered at the subspace ṼJ [10]. Thus, ν is sub-
stituted by 1-periodic Daubechies scaling function φ̃J,l and
yields the following equation

(ψr, φ̃J,l) +
ik0

2
(Xψ, φ̃J,l) = 0. (25)

Interpolation formula for ψ in resolution J is derived from
equation (20) as

ψJ(z, r) =
2J−1∑
k=0

cJ,k(r)φ̃J,k(z). (26)

By substituting (26) in equation (25) the wavelet

Galerkin depth discretization is obtained as

∑
k

∂

∂r
cJ,k(r)(φ̃J,k(z), φ̃J,l(z)) +

∑
k

cJ,k(r)[
i

2k0
(φ̃”

J,k(z), φ̃J,l(z)) +

ik0

2
(V (z)φ̃J,k(z), φ̃J,l(z))] = 0,

where, l = 0, . . . , 2J − 1. In matrix notation the above
formulation is changed as

∂cJ
∂r

= [L + N ]cJ = Hop cJ , (27)

The next step to SSWGM consists of solving (27) as an
ordinary differential equation in r [20]. This gives

cJ(r + ∆r) = exp(
∫ r+∆r

r

Hopdr
′) cJ(r). (28)

In equation (27), we have

Lk,l =
i

2k0

∫
φ̃”

J,k(z)φ̃J,l(z) dz,

Nk,l =
ik0

2

∫
V (z)φ̃J,k(z)φ̃J,l(z) dz,

and ∫
φ̃”

J,k(z)φ̃J,l(z) dz = δ(k, l),

where, δ is Kronecker function. These integral components
are called two term connection coefficientswith the follow-
ing general form

Γd
k =

∫ +∞

−∞
φ(z)φd

k(z)dx, 2 −N ≤ k ≤ N − 2. (29)

Since the support of φ and φd overlap only for 1−N ≤ k ≤
N − 1 There are 2N − 3 nonzero connection coefficients
that can be calculated by the following properties

Γd
k = (−1)kΓd

−k, k ∈ [2 −N,N − 2],

N−1∑
r=0

N−1∑
s=0

arasΓd
2k+s−r =

1
2d

Γd
k, k ∈ [2 −N,N − 2],

n−2∑
k=2−N

Md
k Γd

k = d!,

More details can be referred in [19, 11, 15]. The matrix
representation of these coefficients is sparse and circulant
then solution can be handled completely by use of the FFT
for decreasing computational cost. interpolating parameter
cJ and its range derivative, between two range level n and
n+ 1 for equation (27) are defined as

cJ(r + ∆r) = exp(∆rL) exp(∆rN )cJ (r). (30)
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The exponential transform of linear operator L is defined
by Taylor expansion as

exp(∆rL) = I + ∆rL +
(∆r)2

2!
L2 + · · · , (31)

that based on matrix multiplications with computational
complexity O(N3). Thus, computational cost of approx-
imating (31) can be very expensive. Another useful ap-
proximation for this exponential term has been applied at
follows

cn+1
J = exp(∆r

L
2

) exp(∆rN ) exp(∆r
L
2

)cnJ , (32)

with initial field cJ(0) that we use Gaussian starter [4]. The
left side of (31) is circulant. Thus, it can be discretize as

exp(∆rL) = F−1ΛeF ,
Λe = diag(ê),

ê = Fe,

where, e is the first column of matrix exp(∆rL), and oper-
ator F is the FFT.

4 Numerical Result

To illustrate many features of idealized ocean for deep wa-
ter wave propagation, we use Munk sound speed profile as

c(z) = 1500.0 [1.0 + ε(z̃ + 1 − e−z̃)], (33)

the quantity ε is as

ε = 0.00737,

while, the scaled depth z̃ is taken as

z̃ =
2(z − 1300)

1300
.

This sound speed profile is plotted in figure 2. Taking a
homogeneous, halfspace bottom with velocity, density and
attenuation 1700m/s,1500kg/m3 and 0.5dB/km, respec-
tively, the numirical results based on our proposed method
is shown in figure 3 for source depth and frequency 100m
and 50Hz, respectively. In the next example, we consider a
shallow water environment with strong contrasts in veloc-
ity, density and attenuation. This model consists wedge-
shaped ocean for 2.86◦ wedge with a penetrable lossy bot-
tom. The initial water depth is 200m decreasing linearly to
zero at a range of 4km for the depth of the source 100m.
Figure 4 shows the results of frequency 200Hz and figures
5-8 show transmission loss for receiver depth 30m and fre-
quencies, 20Hz, 200Hz, 1000Hz and 2000Hz respectively.
As can be seen from this figures, our method is in good
agreement with the physical behavior of wave propagation
in deep and shallow water [4].
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Figure 2: The Munk sound speed profile.

Figure 3: Transmission loss shade for the Munk profile for wa-
terborn mode.

Figure 4: Transmission loss shade for source frequency 200Hz.
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Figure 5: Transmission loss profile for source frequency 20Hz
and receiver depth 30m.
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Figure 6: Transmission loss profile for source frequency 200Hz
and receiver depth 30m.
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Figure 7: Transmission loss profile for source frequency 1000Hz
and receiver depth 30m.
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Figure 8: Transmission loss profile for source frequency 2000Hz
and receiver depth 30m.

5 Conclusion

In this paper, split step wavelet Galerkin method (SS-
WGM)was formulated for solving underwater wave prop-
agation in range-independent fluid/solid media. Parabolic
equation model was applied for transforming elliptic wave
to parabolic wave equation that enable us to use marching
approaches in numerical algorithms. The numerical solu-
tion of SSWGM was applied for deep and shallow water
environment involving water column over bottom. To eval-
uate the efficiency of the proposed method, some simula-
tions was demonstrated and the usefulness of SSWGM was
highlighted through them.
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