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Abstract: This paper describes Modular General Fuzzy Hypersphere Neural Network (MGFHSNN) with its 
learning algorithm, which is an extension of General Fuzzy Hypersphere Neural Network (GFHSNN) proposed 
by Kulkarni, Doye and Sontakke [1] that combines supervised and unsupervised learning in a single algorithm 
so that it can be used for pure classification, pure clustering and hybrid classific ation/clustering. MGFHSNN 
offers higher degree of parallelism since each module is exposed to the patterns of only one class and trained 
without overlap test and removal, unlike in Fuzzy Hypersphere Neural Network (FHSNN) [2], leading to re-
duction in training time. In proposed algorithm each module captures peculiarity of only one particular class 
and found superior in terms of generalization and training time with equivalent testing time. Thus, it can be 
used for voluminous realistic database, where new patterns can be added on fly.    
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1 Introduction 
Fuzzy neural networks have become very popular 
and widely being used in the pattern recognition ap-
plications. Basically, there are two main training 
strategies employed by fuzzy neural networks; su-
pervised and unsupervised learning. In supervised 
learning, class labels are provided with input patterns 
and the decision boundary between classes that 
minimizes misclassification is achieved. It is often 
referred as pattern classification problem. In unsu-
pervised learning, train ing patterns are unlabeled and 
clusters of the patterns are formed with a suitable 
sim ilarity measure, which is referred as clustering 
problem. In real high dimensional problems, the data 
is often a mixture of labeled and unlabeled instances. 
To make full use of all the available information car-
ried by both labeled and unlabeled patterns, some at-
tempts have been made by combining supervised and 
unsupervised learning in a single training algorithm.  
  Many papers using fuzzy neural networks are 
reported on studies of pattern classification and clu s-
tering. Pedrycz and Waletzky have shown that even 
a small percent of the labeled patterns substantially 
improve the result of clustering [3]. Gabrys and Bar-
giela have proposed general fuzzy min-max neural 
network (GFMM) for clustering and classification 
[4], which is an extension of  
FMN, with a fusion of supervised and unsupervised 
learning [5,6]. Patil, Kulkarni and Sontakke have 
proposed general fuzzy hyperline segment neural 
network (GFHLSNN) [7] and found to be the best 
among all for recognition. Doye and Sontakke [8] 
have proposed modular general fuzzy min-max neu-
ral network, which is used for speech recognition of 

Marathi language (Language spoken in the state of 
Maharashtra, INDIA) and shown that the modular 
network has better average recognition accuracy. 
Patil, Kulkarni and Sontakke [9,10] have proposed 
modular fuzzy hypersphere neural network 
(MFHSNN), and modular fuzzy hyperline segment 
neural network (MFHLSNN) and found superior 
than FHSNN and FHLSNN in terms of generaliza-
tion and training time with equivalent tes ting time. 
 In this paper we present the MGFHSNN alg o-
rithm, which is an extension of GFHSNN and it is 
applied for rotation invariant handwritten character 
recognition. Ring and Zernike features are used as 
feature extraction methods. Its performance is also 
tested using Fisher Iris database.  
  This paper is organized as follows. The t opology 
and its learning algorithm are described in section II 
and III, respectively. The performance comparison 
of MGFHSNN with FHSNN, FMN and FNN algo-
rithms using standard databases is presented in sec-
tion IV. Finally the conclusions are stated in section 
V. The notations used in this paper are kept consis-
tent with the original paper introduc ing GFHSNN, as 
far as possible for reference and comparison pur-
poses. 
 

2 Topology 
During training phase, K  modules of GFHSNN are 
used, if database consists of patterns of K  number of 
classes as shown in Fig. 1, in which each module is a 
simple two layer feed forward neural network that 
grows adaptively to meet the demands of the prob-
lem. The first layer accepts the n-dimensional input 
pattern  and  second  layer  consists of  hyperspheres  
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Fig. 1:  Modules of MGFHSNN during training phase.  
 

 
(HSs) that are created during training. Each module 
is trained with patterns of that class to which it 
represents. Hence, each module learns peculiar ities 
of a single class.  
   For any thk  module, the weights between first 
and second layer represents center points and radii of 
the HSs created during learning. These weights are 
stored in a matrix kCP .  Each row in kCP  is )1( +n  

dimensional vector in which first n components 

represents center point and thn )1( +  component con-
tains radius of the HS. A center point, radius and a 
fuzzy membership function, characterizes each HS in 
a module. The fuzzy membership function returns 
values between 0 and 1.  The processing performed 
by thj  fuzzy HS node in thk  module, i.e. k

jm , is 

shown in the Figure 2. 
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Figure 2: Implementation of Fuzzy HS 
 
 The threshold input of HS denoted as T is set to 
one and it is weighted by k

jζ , where k
jζ  represents 

radius of HS k
jm , which is updated during training. 

The maximum size of HS is bounded by a user de-
fined value λ, called as growth parameter where 

10 ≤≤ λ .  Hence, λ puts maximum limit on the ra-
dius of the HS. Assuming the training set defined as 
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the thh  pattern, and represen ting center point of HS 
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and the argument l  is defined as,  
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Fig. 3: Membership function plot 
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Figure 4: Architecture of MFHSNN in testing phase. 
 

The membership function returns 1=k
jm , if HS in-

cludes the pattern hR .  The sensitivity parameter γ , 

10 ≤< γ , governs how fast the membership value 
decreases outside the HS, as the distance between 

hR  and k
jC  increases.  The plot of membership 

function with center point = [0.5 0.5] and radius 
equal to 0.3 is shown in Fig. 3. After training the 
performance of MFHSNN is tested using the four-
layer feedforward neural network architecture as 
shown in Fig. 4. The first two layers are constructed 
during training. The third layer uses K MAX Fuzzy 
Neurons (FNs), one for each module.  The output of 

thk  module, kn , is calculated as,  
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where kq  represents number of HSs in thk module 
created in training phase. Hence the output of third 
layer gives fuzzy decision and the output kn  indi-
cates the degree of membership of the input pattern 
to the class k . 
 The fourth layer contains COMP-FNs defined as 
in [11]. Finally each CF  node delivers non-fuzzy 

output which is described as,  
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where, Kto1for),(max == knT k . 

3 Learning Algorithm 
The training set R consists of a set of P ordered 
pairs { }hh dR , , where ( ) n

hnhhh IrrrR ∈= ,...., 21  is the 
thh input pattern and { }K,....,2,1∈hd is the index of 

one of the K classes. The learning algorithm of 
MFHSNN composed of two steps. 
 

1. Initialization: All K modules are initialized by 
creating a HS in each with a first pattern belonging 
to the class of the module. This is a state when the 
network has K modules, each containing one HS 
having radius equal to zero and a center point ini-
tialized with the pattern of corresponding class. 

 

2. Training: Actual training begins after the initiali-
zation. An input pattern of class k is applied to 

thk module only and fuzzy membership of the in-
put pattern with all the HSs within that module is 
calculated. After this any one of the two cases that 
are described below can happen. 

Case 1: Accommodation by expansion of HS: 
Each HS has maximum limit on its radius denoted by 
the parameter λ. The pattern is included in the exist-
ing HS if radius of that HS after expansion is less 
than or equal to λ . This constraint is stated in (6). 
The HS is expanded to include the input pattern by 
modifying its radius if the criterion stated in (6) is 
satisfied. This is described by following two steps. 

Step 1: Determine using (1), whether the pattern 

hR  is contained by any one of the existing HSs.  If 
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hR  is included then the remaining steps in the 
training process are skipped and the training con-
tinues with the next training pair.  
Step 2: If the pattern hR  falls outside the HS, then 
the HS is expanded to include pattern if the expan-
sion crit erion is met. 
For the HS k

jm  to include hR , 

( ) λ≤
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If the expansion criterion is satisfied then the pat-
tern hR  is included as, 
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Case II: Accommodation by creation of new HS: 
If case I fails then to include the input pattern, a 

new HS is created as,  
 

h
k
new RC =  and 0=k

newζ .                             (8) 
 

4 Simulation Results 
MGFHSNN is implemented using MATLAB 5.1 on 
P-III, 733MHz PC. The results obtained are com-
pared with FNN, FMN, and FHSNN. For compar i-
son, same databases are used in the same sequence 
of data presentation. Fisher Iris data, which is well 
known to the pattern recognition community, is used 
in the experimentation, and collected from the ma-
chine-learning databases [12]. This database contains 
150 patterns of 3 classes. Each class has 50 in-
stances. Each class refers to a type of Iris plant. One 
class is linearly separable from other two but the lat-
ter are not linearly separable from each other. Pattern 
classes are Iris-Setosa, Iris-Versicolor and Iris-
Virginica. Feature vector is 4-dimensional excluding 
class label. For recognition purpose set I, and II are 
prepared from Fisher Iris database  by randomly se-
lecting 75 patterns in each set. When MGFHSNN is 
trained with λ  = 0.095 with set II it has created 35 
HSs and recognized 72 patterns in set I. When 
FHSNN is trained with λ = 0.0587 for set II it has 
created 37 HSs and recognized 71 patterns from set 
I. From Table 1 it is clear that the MGFHSNN gives 
better recognition rate.  
 

Table 1. Recognition with Fisher Iris dat a. 
 

 Set-I Set-II λ HS  
FHSNN 93.33 100 0.0587 37 

MGFHSNN 96.00 100 0.095 35 

  
 Performance of MGFHSNN algorithm is also 
verified for rotation invariant handwritten character 
recognition and compared with FNN, FMN and 

FHSNN algorithms. The handwritten characters can 
be in arbitrary location, scale and orientation.  Ten 
numerals from two hundred writers are scanned and 
stored in BMP format.  The linear moment normali-
zation discussed by Perantonis and Lisboa [13] is 
used to normalize characters to get translation and 
scale invariance. After normalization the rotation in-
variant ring features defined as in [14] are extracted 
from the normalized characters by setting ring width 
to two.  These feature vectors are scaled within the 
range [0,1].  Therefore, the pattern space with 16 
ring features is a 16-dimensional unit cube. The 
Zernike features up to order five defined in [15] are 
also extracted and then scaled within the range [0,1] 
along each dimension.  Pattern space with Zernike 
features is 16-dimensional unit cube because; se-
lected features start from second order m oments. 
 The database of handwritten characters consists 
of two thousand characters. Four data sets are pre-
pared from this database and used in the exper i-
ments. Set-1 is unrotated training set, i.e. original 
training set cons isting of one thousand training pat-
terns, which is reused to verify the recognition. Set-2 
is rotated training set extracted from Set 1, i.e. each 
sample of Set-2 is a rotated ve rsion of sample in Set 
1 with an angle of 150. Set 3 is unrotated testing set 
consisting of remaining one thousand patterns in the 
database that is used to evaluate generality. Set-4 is 
rotated testing set extracted from Set-3, i.e. each 
sample of Set-4 is a rotated version of sample in Set-
3, with an angle of 150. 
 

Table 2. Recognition with Zernike features 
 

 Set -1 Set -2 Set -3 Set -4 Avg. 
FNN 100 25.6 20.8 13.9 40.075 
MFNN 100 27.9 20.1 15.4 40.85 
FMN 100 51.9 28.7 21.5 50.525 
FHSNN 100 53.5 29.3 24.2 51.75 
MGFHSN
N 

100 56.05 29.5 24.5 52.51 

 
 The results obtained with Zernike features are 
tabulated in Table 2. The MGFHSNN algorithm cre-
ated 997 HSs when trained with 03.0=λ . Similarly, 
the FHSNN algorithm created 997 HSs.  It is ob-
served that the recognition rates of MGFHSNN are 
better  for less number of HSs. 

 

Table 3. Recognition with ring features 
 

 Set-1 Set-2 Set-3 Set-4 Avg. 

FNN 100 76.1 31.4 27.5 58.75 

FMN 100 97.4 42.7 41.0 70.27 

FHSNN 100 99.3 45.6 44.5 72.35 

MGFHSNN 100 99.7 45.9 44.8 72.65 
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 When the MGFHSNN algorithm is trained with 
ring features, its performance is found better than 
FNN and FMN and equiporable with the FHSNN. 
These results are listed in Table 3. The MGFHSNN 
algorithm gives better recogn ition rates for all the 
sets as compared to FNN and FMN algorithms. Ta-
bles 2 and 3 shows that recognition rates with ring 
features are superior than Zernike features. 

   The performance of these algorithms is also 
compared in unsupervised (pure clustering) mode us-
ing Fisher Iris data. Before presentation of data all 
the class labels are set to zero i.e. all patterns are 
made unlabeled. The performance is tested and tabu-
lated in confusion matrices shown in Table 4. The 
order of data presentation is same for all the algo-
rithms. It is observed that MGFHSNN yields less 
confusion than GFMM.   
 

Table 4: Confusion matrices (a) MGFHSNN,  
                                      (b) GFMM 

 
    λ=0.05        HSs=74             HB size = 0.05, HBs=74 

 1 2 3   1 2 3 
1 100    1 100   
2 2 98   2  82 18 
3   100  3   100 

                 (a)                    (b) 
     
 Timing analysis using ring features is listed in 
Table 5 which shows that the MGFHSNN algorithm 
is computationally eff icient as compared to the FNN, 
FMN and FHSNN algorithms.  
             

Table 5. Timing analysis  
 

 
Training 
time (sec) 

Recall time / pat-
tern (sec) 

FNN 1228.5 1.4252 

FMN 435.45 1.4986 

FHSNN 200.32 0.384 

MGFHSNN 97.71 0.2647 
 

5 Conclusions 
Proposed algorithm can be used for pure classif ica-
tion, pure clustering and hybrid classific ations and 
clustering. It has ability to learn the patterns faster 
because it creates/expands HSs without any overlap 
test and its removal, which is a substantial overhead 
in  FMN and FHSNN. Thus it can be used in volu-
minous realistic dat abase recognition purposes where 
less training time is the prime demand. Percentage 
recognition of MGFHSNN algorithm is found supe-
rior with less number of HSs when observed for 
handwritten character recognition. Clustering 
performance of MGFHSNN gives less confusion 

formance of MGFHSNN gives less confusion with 
that of GFMM. Recognition rates with ring features 
are superior than Zernike features. 
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