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Abstract: In this paper, we concern with transpose of the weighted mean matrix
(This is upper triangular matrix.) on weighted sequence spaces `p(w) and  Lp(w) which

is considered by the author in [8] and [9] for special case of these operator, such as
Copson on `1(w) and d(w, 1). Also, in a recent paper[7], the author has discovered the
upper bound for the Copson operator on the weighted sequence spaces d(w, p). Also, we
establish analogous upper bound for the continuous case. The weighted mean matrices

are considered by the author in [10].
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1. Introduction and Notations:
In this note, we consider the problem of find-

ing the norm of transpose of the weighted mean
matrix Ad = (an,k), denoted by At

d, where

an,k =

{
dk
Dn

for 1 ≤ k ≤ n
0 for k > n.

where the dns are non-negative numbers with
partial sum Dn = d1 + . . . + dn(We insist that
d1 > 0, so that each Dn is positive.).

These results are extension of some results
which is considered by the author in [8] and [9]
and Bennett[2] and [4]. If rn =

∑n
k=1

wkdk
Dn

, and
also Rn and Wn are defined as usual, then the
norm of At

d on `1(w) is the supremum of Rn
Wn

.

Let w = (wn) be a decreasing, non-negative
sequence with limn→∞wn = 0 and

∑∞
n=1 wn di-

vergent. Write Wn = w1 + . . . + wn. Then `p(w)
(and the Lorentz sequence space d(w, p) ), where
p ≥ 1, is the space of sequences x = (xn) with

‖x‖`p(w) = (
∞∑

n=1

wn|xn|p)1/p,

‖x‖w,p = (
∞∑

n=1

wnx∗n
p)1/p

convergent, where (x∗n) is the decreasing rear-
rangement of |xn|.

We now consider the operator A defined by
Ax = y, where yn =

∑∞
k=1 an,kxk. We shall write

‖A‖`p(w) for the norm of A when regarded as an
operator from `p(w) to `p(w), where

‖A‖`p(w) = sup{‖Ax‖`p(w) : ‖x‖`p(w) ≤ 1},

‖A‖w,p = sup{‖Ax‖w,p : ‖x‖w,p ≤ 1}.
Also, we define

Mw,p(A) = sup{‖Ax‖`p(w) : ‖x‖`p(w) = 1},

where x = (xn) is regarded as a decreasing, non-
negative sequences in `p(w).

We assume that
1) an,k ≥ 0 for all n, k. This implies that

|Ax| ≤ A(|x|) for all x, and hence the non-
negative sequences x are sufficient to determine
‖A‖`p(w).

We assume further that each A(ek) is in `1(w),
that is:
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2)
∑∞

n=1 wnan,k is convergent for each k, that
garantte each A(ek) is in `1(w).

For two finite sequence x = (xn) and y = (yn),
write y � x if

Yk ≤ Xk (∀k),

where Xk =
∑k

i=1 xi and Yk =
∑k

i=1 yi.
Lemma 1: Suppose x, y ∈ IRn with x � y

and (ai) is decreasing. Suppose also
either an ≥ 0,
or Xn = Yn. Then

n∑
k=1

akxk ≤
n∑

k=1

akyk.

Proof: By Abel summation, it follows that

n∑
k=1

akyk =
n∑

k=1

ak(Yk − Yk−1) (Y0 = 0)

=
n−1∑
k=1

Yk(ak − ak+1) + anYn.

Now, applying the hypothesis in both cases, we
deduce that

n−1∑
k=1

Yk(ak − ak+1) + anYn ≥

n−1∑
k=1

Xk(ak − ak+1) + anXn =
n∑

k=1

akxk.

Therefore
n∑

k=1

akxk ≤
n∑

k=1

akyk.

Corollary: Let x, y be decreasing, non-
negative elements of IRn (or `1(w)) with x � y.
Then

‖x‖`1(w) ≤ ‖y‖`1(w).

Proposition 1([8], Proposition 1.4.1):
Suppose that (1) holds, and that

(3) for all subsets M,N of IN having m,n ele-
ments respectively, we have

∑
i∈M

∑
j∈N

ai,j ≤
m∑

i=1

n∑
j=1

ai,j .

Then
‖Ax‖`1(w) ≤ ‖Ax∗‖`1(w)(‖Ax‖w,1 ≤ ‖Ax∗‖w,1)
for all non-negative elements x of `1(w)(d(w, 1)),

where x∗ is the decreasing rearrangement of |xn|.
Hence decreasing, non-negative sequences are
sufficient to determine ‖A‖`1(w)(‖A‖w,1).

Proposition 2([3], Lemma 9): Let A =
(ai,j)∞i,j=1 be a matrix operator with non-negative
entrie s, and consider the associated transforma-
tion, x → y, given by yi =

∑∞
j=1 ai,jxj . Then the

following conditions are equivalent:
(i) y1 ≥ y2 ≥ . . . ≥ 0 whenever x1 ≥ x2 ≥

. . . ≥ 0.

(ii) ri,n ≥ ri+1,n (i, n = 1, 2, ...),
where ri,n =

∑n
j=1 ai,j .

Proof: (i) =⇒ (ii) follows by taking x to be
the sequence (1, ..., 1, 0, ...) of n ones followed by
zeros.

(ii) =⇒ (i): By Abel summation, it follows
that

yi =
∞∑

j=1

ai,jxj =
∞∑

n=1

ri,n(xn − xn+1).

Since ri,n ≥ ri+1,n (∀i, n), and also (xn) is de-
creasing, non-negative sequence, then
∞∑

n=1

ri,n(xn − xn+1) ≥
∞∑

n=1

ri+1,n(xn − xn+1)

=
∞∑

j=1

ai+1,jxj = yi+1.

This completes the proof of the statement.
Lemma 2: Suppose u = (un) and w = (wn)

are sequences of positive numbers.
(i) If m ≤ un

wn
≤ M for all n, then m ≤ Un

Wn
≤

M for all n.

(ii) If
(

un
wn

)
is increasing (or decreasing), then

so is
(

Un
Wn

)
.

(iii) If un
wn
−→ U as n −→∞, then Un

Wn
−→ U

as n −→∞ (also with U = ∞).
Proof. Elementary.

3. Transpose of the Weighted Mean
operator

Let now Ad be the weighted mean matrix with
properties (1), (2) and (3), and At

d be its trans-
pose which is defined as follows:

(At
dx)(n) =

∞∑
k=n

dnxk

Dk
.
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This is an upper triangular matrix.
Recall that (wn) is said to be 1-regular if

r1(w) = sup
n≥1

Wn

nwn

is finite[11]. A pleasently simple statement can
also be made about the norm of the weighted
mean matrix operator for general w = (wn).
With the previous notation,

rn =
1
n

(w1 + . . . + wn) =
Wn

n
.

Theorem 1: Suppose At
d is a weighted mean

operator defined as before and also d = (dn) is
such that ndn ≤ Dk (∀k ≥ n). If w = (wn) is
1-regular, then for p > 1, we have:

‖At
d‖w,p ≤ pr1(w) &

(
‖At

d‖`p(w) ≤ pr1(w)
)

.

Proof: As mentioned before, it is sufficient
to consider decreasing, non-negative sequences.
Let x be in `p(w) or d(w, p) such that x1 ≥ x2 ≥
. . . ≥ 0, and so ‖x‖w,p = ‖x‖`p(w) and also the
same is true for the norm of At

d. Then applying
[11], Theorem 4.1.6, we deduce that:

‖At
d‖p

w,p =
∞∑

n=1

wn

( ∞∑
k=n

dnxk

Dk

)p

≤
∞∑

n=1

wn

( ∞∑
k=n

xk

k

)p

≤ (pr1(w))p
∞∑

n=1

wnxp
n.

= (pr1(w))p‖x‖p
w,p.

Hence ‖At
d‖w,p ≤ pr1(w). This completes the

proof.
Theorem 2: Suppose At

d is an operator on
`1(w). If

R = sup
Rn

Wn
< ∞,

where rn =
∑n

k=1
wkdk
Dn

, and Rn = r1 + . . . + rn

and Wn as usual. Then At
d is a bounded operator

from `1(w) into itself, and we have Mw,1(At
d) =

R = ‖At
d‖w,1.

Proof: Since (At
dx)(n) ≤ (At

dx
∗)(n) for all

n, it is sufficient to consider decreasing, non-
negative sequences. Let x be in `1(w) such that

x1 ≥ x2 ≥ . . . ≥ 0. Then

‖At
dx‖w,1 = ‖At

dx‖`1(w) =
∞∑

n=1

( ∞∑
k=n

dnxk

Dk

)

=
∞∑

n=1

rnxn

=
∞∑

n=1

Rn(xn − xn+1)

≤ R
∞∑

n=1

Wn(xn − xn+1)

= R
∞∑

n=1

wnxn.

Hence ‖At
d‖w,1 = Mw,1(At

d) ≤ R.
We have to show that this constant is the best

possible. We take x1 = x1 = . . . = xn = 1 and
xk = 0 for all k ≥ n + 1. Then

‖x‖`1(w) = Wn & ‖At
dx‖`1(w) = Rn.

Therefore Mw,1(At
d) = R = ‖At

d‖w,1.

3. Copson Operator on Weighted
Sequence Spaces:

We now consider the Copson operator C on `1(w)
and d(w, 1), which is defined by y = Cx, where

yi =
∞∑
j=i

xj

j
.

It is given by the transpose of the matrix of the
Averaging operator A:

ai,j =

{
1
j for i ≤ j

0 for i > j

This is an upper triangular matrix. The classi-
cal inequality of Copson [5] and [6] states that
‖C‖p = ‖At‖p = p(p > 1) as an operator on `p

spaces.
Proposition 3: If w = (wn) is 1-regular, then

C maps `1(w) into `1(w). Also, we have

‖C‖w,1 = Mw,1(C) ≤ ‖C‖`1(w) ≤ r1(w).

Proof: Since

rn =
Wn

n
≤ r1(w)wn (∀n),
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then by Lemma 2(i) and Theorem 2, it follows
that

‖C‖w,1 = Mw,1(C) ≤ ‖C‖`1(w) ≤ r1(w).

Corollary 1([8], Theorem 2.3.1): If

sup
1

Wn

n∑
n=1

Wk

k
< ∞,

then the Copson operator is a bounded operator
from d(w, 1) into itself, and also we have

Mw,1(C) = ‖C‖w,1 = sup
1

Wn

n∑
n=1

Wk

k
.

Write

un =
1
nr

, (r > 0) vn =
∫ n

n−1

1
tr

dt

and(as usual) Un = u1 + . . . + un, etc. For r < 1,
the usual integral comparison gives

v2 + . . . + vn ≤ Un ≤ Vn,

or
1

1− r
(n1−r − 1) ≤ Un ≤

n1−r

1− r
,

we need to know that Un
Vn

is increasing. The fol-
lowing is the key lemma.

Lemma 3: With vn as above (for any r > 0),
nrvn decreases with n and nrvn+1 increases with
n.

Proof: Write tn = nrvn. Then

tn+1 = (n+1)r
∫ n+1

n

ds

sp
= (n+1)r

∫ n

n−1

ds

(s + 1)r
.

For n − 1 ≤ s ≤ n, we have n+1
n ≤ s+1

s , hence
(n+1)r

(s+1)r ≤ nr

sr . Therefore tn+1 ≤ tn (∀n). Simi-
larly for the second statement.

Proposition 4: Let 0 < r < 1 and let
Un =

∑n
j=1

1
jp . Then Un

n1−r increases and tends
to 1

1−r .
Proof: With vn as above, by Lemma 3, un

vn

increases with n, and so applying Lemma 1, we
deduce that Un

Vn
is increasing. The limit follows

from the inequalities above.
We now consider the tail of the series for ζ(1+

p). For the tail of a series, the analogous result
to Lemma 2(ii) is the following.

Lemma 4: Suppose that vn > 0, un > 0
for all n and that

∑∞
n=1 vn and

∑∞
n=1 un are

convergent. Let U(n) =
∑∞

j=n uj , similarly V(n).

If
(

un
vn

)
is increasing (or decreasing), then so is(

U(n)

V(n)

)
.

Proof: Elementary.
Proposition 5: Let r > 0 and let

U(n) =
∑∞

j=n
1

j1+r . Then nrU(n) decreas-
ing, (n − 1)rU(n) increasing. Both tend to 1

r as
n −→∞.

Proof: Let un = 1
n1+r and vn =

∫ n
n−1

1
t1+r dt.

Then V(n+1) = 1
rnr . By the usual integral com-

parison,

1
rnr

≤ U(n) ≤
1

r(n− 1)r
,

which implies the stated limits. By Lemma
3, ( un

vn+1
) is decreasing, so by Lemma 2(ii),

U(n)

V(n+1)
= rnrU(n) is decreasing. Similarly, U(n)

V(n)
is

increasing.
Remark: This is stated without proof in [1],

Remark 4.10.
Theorem 3: If w = ( 1

np ), 0 < p ≤ 1, then
the Copson operator C is a bounded operator
from `1(w)(d(w, 1)) into itself. Also, we have

Mw,1(C) = ‖C‖w,1 = ‖C‖`1(w) =
1

1− p
.

Proof: Since rn = wn
n , then

rn

wn
=

Wn

nwn
=

Wn

n1−p
.

Also, since Wn is the Un of the Proposition 4,
then Wn

n1−p increases with n and tends to 1
1−p .

Hence applying Proposition 2, we deduce that

Mw,1(C) = ‖C‖w,1 = ‖C‖`1(w) =
1

1− p
.

Remark: When p = 1, so that wn = 1
n , we

have

rn

wn
= Wn −→∞ (as n −→∞),

so the Copson operator C is not a bounded op-
erator on d(w, 1), although of course is satisfies
condition (2).
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Theorem 4: Let wn be defined by Wn =
n1−p, where 0 < p < 1. Then the Copson op-
erator is a bounded operator from d(w, 1) into
itself. Also, we ahve

‖C‖w,1 = Mw,1(C) =
1

1− p
.

Proof: We now have

Rn =
n∑

k=1

Wk

k
=

n∑
k=1

1
kp

,

so the new Rn
Wn

is exactly the rn
wn

of Theorem 3
and Proposition 4 again gives the statement.

4. Continous Version of the Copson
Opreator:

In this section, we consider the analogous prob-
lem for the continuous case concern the space
 Lp(w). In the continuous case, the Copson oper-
ator C is given by:

(Cf)(x) =
∫ ∞

x

f(t)
t

dt.

Let w(x) be a decreasing, non-negative function
on (0,∞). We assume that W (x) =

∫ x
0 w(t)dt is

finite for each x(Hence 1
xα is permited for 0 <

α < 1, but not for α = 1.). Then  Lp(w) is the
space of functions f having∫ ∞

0
w(x)|f(x)|pdx

convergent, with norm

‖f‖ LP (w) =
(∫ ∞

0
w(x)|f(x)|pdx

)1/p

.

Proposition 6: Let f ≥ 0 be in  Lp(w), a(x) =
w(x)
W (x)f(x), and also A∞(x) =

∫∞
x a(t)dt. Then

A∞(x) is finite and also we have:

‖A∞‖ Lp(w) ≤ p‖f‖ Lp(w).

Proof: Fix x0. For any x < x0, let
∫ x0
x a(t)dt =

Ax0(x). Then d
dxAx0(x)p = −pAx0(x)p−1a(x),

and so

Ax0(x)p = Ax0(x)p −Ax0(x0)p

= p

∫ x0

x
Ax0(t)p−1a(t)dt.

Hence, applying Holder’s inequality, we deduce
that: ∫ x0

0
w(x)Ax0(x)pdx =

p

∫ x0

0
w(x)

∫ x0

x
Ax0(t)p−1a(t)dtdx =

p

∫ x0

0
Ax0(t)p−1a(t)

∫ t

0
w(x)dxdt =

p

∫ x0

0
Ax0(t)p−1a(t)W (t)dt =

p

∫ x0

0
w(t)Ax0(t)p−1a(t)f(t)dt ≤

p

(∫ x0

0
w(t)f(t)pdt

)1/p (∫ x0

0
w(t)Ax0(t)pdt

)1/p∗

.

Therefore(∫ x0

0
w(t)Ax0(t)pdt

)1/p

≤ p‖f‖ Lp(w).

The above inequality is true for all x0 > 0, and so
true with x0 replacing by infinity. This completes
the proof.

Proposition 7: If W (x)
w(x) ≤ r1(w) (∀x > 0),

then
‖C‖ Lp(w) ≤ pr1(w).

Proof: We have

1
t
≤ r1(w)

w(t)
W (t)

,

and so

(Cf)(x) ≤ r1(w)
∫ ∞

x

w(t)
W (t)

f(t)dt = r1(w)A∞(x).

This establishes the statement.
Theorem 5: If w(x) = 1

xα , where 0 ≤ α < 1,
then

‖C‖ Lp(w) =
p

1− α
.

Attained by action of C on decreasing positive
functions.

Proof: (i) We have W (x) = x1−α

1−α , and so

W (x)
xw(x)

=
1

1− α
(∀x > 0).

Hence
‖C‖ Lp(w) ≤

p

1− α
.
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(ii) Now, by taking ε > 0, and define r by:
α + rp = 1 + ε, we deduce that:

f(x) =
{

1
xr for x ≥ 1
1 for 0 ≤ x < 1.

Then f is decreasing and in  Lp(w), since
∫ 1
0

1
xα dx

and
∫∞
0

1
xα+rp dx are convergent. Also, we have:

(Cf)(x) =
∫ ∞

x

1
tr+1

dt =
1

rxr
for x ≥ 1,

and also we have:

(Cf)(x) ≥ (Cf)(1) =
1
r

for 0 < x < 1.

Hence (Cf)(x) ≥ 1
rf(x) (∀x > 0), and so

‖Cf‖ Lp(w) ≥
1
r
‖f‖ LP (w),

where 1
r = p

1−α+ε . Now, applying (i) and (ii) im-
plies the statement.
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