Transpose of the Weighted Mean Matrix on Weighted Sequence Spaces

Rahmatollah Lashkaripour
Department of Mathematics, Faculty of Sciences, Sistan and Baluchestan University, Zahedan, Iran
Fax: +985412447166

Abstract

In this paper, we concern with transpose of the weighted mean matrix (This is upper triangular matrix.) on weighted sequence spaces $\ell_{p}(w)$ and $L_{p}(w)$ which is considered by the author in [8] and [9] for special case of these operator, such as Copson on $\ell_{1}(w)$ and $d(w, 1)$. Also, in a recent paper[7], the author has discovered the upper bound for the Copson operator on the weighted sequence spaces $d(w, p)$. Also, we establish analogous upper bound for the continuous case. The weighted mean matrices are considered by the author in [10].

Key Words:Transpose of Weighted Mean Matrix, Weighted Sequence Space.
2000 Mathematics subject classification. 26D15, 26A48, $47 B 37$.

1. Introduction and Notations:

In this note, we consider the problem of finding the norm of transpose of the weighted mean matrix $A_{d}=\left(a_{n, k}\right)$, denoted by A_{d}^{t}, where

$$
a_{n, k}=\left\{\begin{array}{lll}
\frac{d_{k}}{D_{n}} & \text { for } & 1 \leq k \leq n \\
0 & \text { for } & k>n .
\end{array}\right.
$$

where the d_{n} s are non-negative numbers with partial sum $D_{n}=d_{1}+\ldots+d_{n}$ (We insist that $d_{1}>0$, so that each D_{n} is positive.).

These results are extension of some results which is considered by the author in [8] and [9] and Bennett[2] and [4]. If $r_{n}=\sum_{k=1}^{n} \frac{w_{k} d_{k}}{D_{n}}$, and also R_{n} and W_{n} are defined as usual, then the norm of A_{d}^{t} on $\ell_{1}(w)$ is the supremum of $\frac{R_{n}}{W_{n}}$.

Let $w=\left(w_{n}\right)$ be a decreasing, non-negative sequence with $\lim _{n \rightarrow \infty} w_{n}=0$ and $\sum_{n=1}^{\infty} w_{n}$ divergent. Write $W_{n}=w_{1}+\ldots+w_{n}$. Then $\ell_{p}(w)$ (and the Lorentz sequence space $d(w, p)$), where $p \geq 1$, is the space of sequences $x=\left(x_{n}\right)$ with

$$
\|x\|_{\ell_{p}(w)}=\left(\sum_{n=1}^{\infty} w_{n}\left|x_{n}\right|^{p}\right)^{1 / p}
$$

$$
\|x\|_{w, p}=\left(\sum_{n=1}^{\infty} w_{n} x_{n}^{* p}\right)^{1 / p}
$$

convergent, where $\left(x_{n}^{*}\right)$ is the decreasing rearrangement of $\left|x_{n}\right|$.
We now consider the operator A defined by $A x=y$, where $y_{n}=\sum_{k=1}^{\infty} a_{n, k} x_{k}$. We shall write $\|A\|_{\ell_{p}(w)}$ for the norm of A when regarded as an operator from $\ell_{p}(w)$ to $\ell_{p}(w)$, where

$$
\begin{gathered}
\|A\|_{\ell_{p}(w)}=\sup \left\{\|A x\|_{\ell_{p}(w)}:\|x\|_{\ell_{p}(w)} \leq 1\right\}, \\
\|A\|_{w, p}=\sup \left\{\|A x\|_{w, p}:\|x\|_{w, p} \leq 1\right\} .
\end{gathered}
$$

Also, we define

$$
M_{w, p}(A)=\sup \left\{\|A x\|_{\ell_{p}(w)}:\|x\|_{\ell_{p}(w)}=1\right\}
$$

where $x=\left(x_{n}\right)$ is regarded as a decreasing, nonnegative sequences in $\ell_{p}(w)$.
We assume that

1) $a_{n, k} \geq 0$ for all n, k. This implies that $|A x| \leq A(|x|)$ for all x, and hence the nonnegative sequences x are sufficient to determine $\|A\|_{\ell_{p}(w)}$.
We assume further that each $A\left(e_{k}\right)$ is in $\ell_{1}(w)$, that is:
2) $\sum_{n=1}^{\infty} w_{n} a_{n, k}$ is convergent for each k, that garantte each $A\left(e_{k}\right)$ is in $\ell_{1}(w)$.

For two finite sequence $x=\left(x_{n}\right)$ and $y=\left(y_{n}\right)$, write $y \ll x$ if

$$
Y_{k} \leq X_{k} \quad(\forall k),
$$

where $X_{k}=\sum_{i=1}^{k} x_{i}$ and $Y_{k}=\sum_{i=1}^{k} y_{i}$.
Lemma 1: Suppose $x, y \in \mathbb{R}^{n}$ with $x \ll y$ and $\left(a_{i}\right)$ is decreasing. Suppose also
either $a_{n} \geq 0$,
or $X_{n}=Y_{n}$. Then

$$
\sum_{k=1}^{n} a_{k} x_{k} \leq \sum_{k=1}^{n} a_{k} y_{k}
$$

Proof: By Abel summation, it follows that

$$
\begin{aligned}
\sum_{k=1}^{n} a_{k} y_{k} & =\sum_{k=1}^{n} a_{k}\left(Y_{k}-Y_{k-1}\right) \quad\left(Y_{0}=0\right) \\
& =\sum_{k=1}^{n-1} Y_{k}\left(a_{k}-a_{k+1}\right)+a_{n} Y_{n} .
\end{aligned}
$$

Now, applying the hypothesis in both cases, we deduce that

$$
\begin{aligned}
\sum_{k=1}^{n-1} Y_{k}\left(a_{k}-a_{k+1}\right)+a_{n} Y_{n} & \geq \\
\sum_{k=1}^{n-1} X_{k}\left(a_{k}-a_{k+1}\right)+a_{n} X_{n} & =\sum_{k=1}^{n} a_{k} x_{k} .
\end{aligned}
$$

Therefore

$$
\sum_{k=1}^{n} a_{k} x_{k} \leq \sum_{k=1}^{n} a_{k} y_{k}
$$

Corollary: Let x, y be decreasing, nonnegative elements of $\mathbb{R}^{n}\left(\right.$ or $\left.\ell_{1}(w)\right)$ with $x \ll y$. Then

$$
\|x\|_{\ell_{1}(w)} \leq\|y\|_{\ell_{1}(w)} .
$$

Proposition 1([8], Proposition 1.4.1): Suppose that (1) holds, and that
(3) for all subsets M, N of \mathbb{N} having m, n elements respectively, we have

$$
\sum_{i \in M} \sum_{j \in N} a_{i, j} \leq \sum_{i=1}^{m} \sum_{j=1}^{n} a_{i, j} .
$$

Then
$\|A x\|_{\ell_{1}(w)} \leq\left\|A x^{*}\right\|_{\ell_{1}(w)}\left(\|A x\|_{w, 1} \leq\left\|A x^{*}\right\|_{w, 1}\right)$ for all non-negative elements x of $\ell_{1}(w)(d(w, 1))$,
where x^{*} is the decreasing rearrangement of $\left|x_{n}\right|$. Hence decreasing, non-negative sequences are sufficient to determine $\|A\|_{\ell_{1}(w)}\left(\|A\|_{w, 1}\right)$.
Proposition 2([3], Lemma 9): Let $A=$ $\left(a_{i, j}\right)_{i, j=1}^{\infty}$ be a matrix operator with non-negative entrie s , and consider the associated transformation, $x \rightarrow y$, given by $y_{i}=\sum_{j=1}^{\infty} a_{i, j} x_{j}$. Then the following conditions are equivalent:
(i) $y_{1} \geq y_{2} \geq \ldots \geq 0$ whenever $x_{1} \geq x_{2} \geq$ $\ldots \geq 0$.
(ii) $r_{i, n} \geq r_{i+1, n} \quad(i, n=1,2, \ldots)$, where $r_{i, n}=\sum_{j=1}^{n} a_{i, j}$.
Proof: $(i) \Longrightarrow(i i)$ follows by taking x to be the sequence $(1, \ldots, 1,0, \ldots)$ of n ones followed by zeros.
$(i i) \Longrightarrow(i)$: By Abel summation, it follows that

$$
y_{i}=\sum_{j=1}^{\infty} a_{i, j} x_{j}=\sum_{n=1}^{\infty} r_{i, n}\left(x_{n}-x_{n+1}\right) .
$$

Since $r_{i, n} \geq r_{i+1, n}(\forall i, n)$, and also $\left(x_{n}\right)$ is decreasing, non-negative sequence, then

$$
\begin{aligned}
\sum_{n=1}^{\infty} r_{i, n}\left(x_{n}-x_{n+1}\right) & \geq \sum_{n=1}^{\infty} r_{i+1, n}\left(x_{n}-x_{n+1}\right) \\
& =\sum_{j=1}^{\infty} a_{i+1, j} x_{j}=y_{i+1} .
\end{aligned}
$$

This completes the proof of the statement.
Lemma 2: Suppose $u=\left(u_{n}\right)$ and $w=\left(w_{n}\right)$ are sequences of positive numbers.
(i) If $m \leq \frac{u_{n}}{w_{n}} \leq M$ for all n, then $m \leq \frac{U_{n}}{W_{n}} \leq$ M for all n.
(ii) If $\left(\frac{u_{n}}{w_{n}}\right)$ is increasing (or decreasing), then so is $\left(\frac{U_{n}}{W_{n}}\right)$.
(iii) If $\frac{u_{n}}{w_{n}} \longrightarrow U$ as $n \longrightarrow \infty$, then $\frac{U_{n}}{W_{n}} \longrightarrow U$ as $n \longrightarrow \infty$ (also with $U=\infty$).

Proof. Elementary.

3. Transpose of the Weighted Mean operator

Let now A_{d} be the weighted mean matrix with properties (1), (2) and (3), and A_{d}^{t} be its transpose which is defined as follows:

$$
\left(A_{d}^{t} x\right)(n)=\sum_{k=n}^{\infty} \frac{d_{n} x_{k}}{D_{k}} .
$$

This is an upper triangular matrix.
Recall that $\left(w_{n}\right)$ is said to be 1 -regular if

$$
r_{1}(w)=\sup _{n \geq 1} \frac{W_{n}}{n w_{n}}
$$

is finite[11]. A pleasently simple statement can also be made about the norm of the weighted mean matrix operator for general $w=\left(w_{n}\right)$. With the previous notation,

$$
r_{n}=\frac{1}{n}\left(w_{1}+\ldots+w_{n}\right)=\frac{W_{n}}{n} .
$$

Theorem 1: Suppose A_{d}^{t} is a weighted mean operator defined as before and also $d=\left(d_{n}\right)$ is such that $n d_{n} \leq D_{k} \quad(\forall k \geq n)$. If $w=\left(w_{n}\right)$ is 1 -regular, then for $p>1$, we have:

$$
\left\|A_{d}^{t}\right\|_{w, p} \leq p r_{1}(w) \quad \& \quad\left(\left\|A_{d}^{t}\right\|_{\ell_{p}(w)} \leq p r_{1}(w)\right) .
$$

Proof: As mentioned before, it is sufficient to consider decreasing, non-negative sequences. Let x be in $\ell_{p}(w)$ or $d(w, p)$ such that $x_{1} \geq x_{2} \geq$ $\ldots \geq 0$, and so $\|x\|_{w, p}=\|x\|_{\ell_{p}(w)}$ and also the same is true for the norm of A_{d}^{t}. Then applying [11], Theorem 4.1.6, we deduce that:

$$
\begin{aligned}
\left\|A_{d}^{t}\right\|_{w, p}^{p} & =\sum_{n=1}^{\infty} w_{n}\left(\sum_{k=n}^{\infty} \frac{d_{n} x_{k}}{D_{k}}\right)^{p} \\
& \leq \sum_{n=1}^{\infty} w_{n}\left(\sum_{k=n}^{\infty} \frac{x_{k}}{k}\right)^{p} \\
& \leq\left(p r_{1}(w)\right)^{p} \sum_{n=1}^{\infty} w_{n} x_{n}^{p} . \\
& =\left(p r_{1}(w)\right)^{p}\|x\|_{w, p}^{p} .
\end{aligned}
$$

Hence $\left\|A_{d}^{t}\right\|_{w, p} \leq p r_{1}(w)$. This completes the proof.

Theorem 2: Suppose A_{d}^{t} is an operator on $\ell_{1}(w)$. If

$$
R=\sup \frac{R_{n}}{W_{n}}<\infty,
$$

where $r_{n}=\sum_{k=1}^{n} \frac{w_{k} d_{k}}{D_{n}}$, and $R_{n}=r_{1}+\ldots+r_{n}$ and W_{n} as usual. Then A_{d}^{t} is a bounded operator from $\ell_{1}(w)$ into itself, and we have $M_{w, 1}\left(A_{d}^{t}\right)=$ $R=\left\|A_{d}^{t}\right\|_{w, 1}$.

Proof: Since $\left(A_{d}^{t} x\right)(n) \leq\left(A_{d}^{t} x^{*}\right)(n)$ for all n, it is sufficient to consider decreasing, nonnegative sequences. Let x be in $\ell_{1}(w)$ such that
$x_{1} \geq x_{2} \geq \ldots \geq 0$. Then

$$
\begin{aligned}
\left\|A_{d}^{t} x\right\|_{w, 1}=\left\|A_{d}^{t} x\right\|_{\ell_{1}(w)} & =\sum_{n=1}^{\infty}\left(\sum_{k=n}^{\infty} \frac{d_{n} x_{k}}{D_{k}}\right) \\
& =\sum_{n=1}^{\infty} r_{n} x_{n} \\
& =\sum_{n=1}^{\infty} R_{n}\left(x_{n}-x_{n+1}\right) \\
& \leq R \sum_{n=1}^{\infty} W_{n}\left(x_{n}-x_{n+1}\right) \\
& =R \sum_{n=1}^{\infty} w_{n} x_{n} .
\end{aligned}
$$

Hence $\left\|A_{d}^{t}\right\|_{w, 1}=M_{w, 1}\left(A_{d}^{t}\right) \leq R$.
We have to show that this constant is the best possible. We take $x_{1}=x_{1}=\ldots=x_{n}=1$ and $x_{k}=0$ for all $k \geq n+1$. Then

$$
\|x\|_{\ell_{1}(w)}=W_{n} \quad \& \quad\left\|A_{d}^{t} x\right\|_{\ell_{1}(w)}=R_{n} .
$$

Therefore $M_{w, 1}\left(A_{d}^{t}\right)=R=\left\|A_{d}^{t}\right\|_{w, 1}$.

3. Copson Operator on Weighted Sequence Spaces:

We now consider the Copson operator C on $\ell_{1}(w)$ and $d(w, 1)$, which is defined by $y=C x$, where

$$
y_{i}=\sum_{j=i}^{\infty} \frac{x_{j}}{j} .
$$

It is given by the transpose of the matrix of the Averaging operator A :

$$
a_{i, j}= \begin{cases}\frac{1}{j} & \text { for } \quad i \leq j \\ 0 & \text { for } \quad i>j\end{cases}
$$

This is an upper triangular matrix. The classical inequality of Copson [5] and [6] states that $\|C\|_{p}=\left\|A^{t}\right\|_{p}=p(p>1)$ as an operator on ℓ_{p} spaces.
Proposition 3: If $w=\left(w_{n}\right)$ is 1-regular, then C maps $\ell_{1}(w)$ into $\ell_{1}(w)$. Also, we have

$$
\|C\|_{w, 1}=M_{w, 1}(C) \leq\|C\|_{\ell_{1}(w)} \leq r_{1}(w) .
$$

Proof: Since

$$
r_{n}=\frac{W_{n}}{n} \leq r_{1}(w) w_{n} \quad(\forall n),
$$

then by Lemma 2(i) and Theorem 2, it follows that

$$
\|C\|_{w, 1}=M_{w, 1}(C) \leq\|C\|_{\ell_{1}(w)} \leq r_{1}(w)
$$

Corollary 1([8], Theorem 2.3.1): If

$$
\sup \frac{1}{W_{n}} \sum_{n=1}^{n} \frac{W_{k}}{k}<\infty
$$

then the Copson operator is a bounded operator from $d(w, 1)$ into itself, and also we have

$$
M_{w, 1}(C)=\|C\|_{w, 1}=\sup \frac{1}{W_{n}} \sum_{n=1}^{n} \frac{W_{k}}{k}
$$

Write

$$
u_{n}=\frac{1}{n^{r}}, \quad(r>0) \quad v_{n}=\int_{n-1}^{n} \frac{1}{t^{r}} d t
$$

$\operatorname{and}\left(\right.$ as usual) $U_{n}=u_{1}+\ldots+u_{n}$, etc. For $r<1$, the usual integral comparison gives

$$
v_{2}+\ldots+v_{n} \leq U_{n} \leq V_{n}
$$

or

$$
\frac{1}{1-r}\left(n^{1-r}-1\right) \leq U_{n} \leq \frac{n^{1-r}}{1-r}
$$

we need to know that $\frac{U_{n}}{V_{n}}$ is increasing. The following is the key lemma.

Lemma 3: With v_{n} as above (for any $r>0$), $n^{r} v_{n}$ decreases with n and $n^{r} v_{n+1}$ increases with n.

Proof: Write $t_{n}=n^{r} v_{n}$. Then
$t_{n+1}=(n+1)^{r} \int_{n}^{n+1} \frac{d s}{s^{p}}=(n+1)^{r} \int_{n-1}^{n} \frac{d s}{(s+1)^{r}}$.
For $n-1 \leq s \leq n$, we have $\frac{n+1}{n} \leq \frac{s+1}{s}$, hence $\frac{(n+1)^{r}}{(s+1)^{r}} \leq \frac{n^{r}}{s^{r}}$. Therefore $t_{n+1} \leq t_{n} \quad(\forall n)$. Similarly for the second statement.

Proposition 4: Let $0<r<1$ and let $U_{n}=\sum_{j=1}^{n} \frac{1}{j^{p}}$. Then $\frac{U_{n}}{n^{1-r}}$ increases and tends to $\frac{1}{1-r}$.

Proof: With v_{n} as above, by Lemma 3, $\frac{u_{n}}{v_{n}}$ increases with n, and so applying Lemma 1, we deduce that $\frac{U_{n}}{V_{n}}$ is increasing. The limit follows from the inequalities above.

We now consider the tail of the series for $\zeta(1+$ $p)$. For the tail of a series, the analogous result to Lemma 2(ii) is the following.

Lemma 4: Suppose that $v_{n}>0, u_{n}>0$ for all n and that $\sum_{n=1}^{\infty} v_{n}$ and $\sum_{n=1}^{\infty} u_{n}$ are convergent. Let $U_{(n)}=\sum_{j=n}^{\infty} u_{j}$, similarly $V_{(n)}$. If $\left(\frac{u_{n}}{v_{n}}\right)$ is increasing (or decreasing), then so is $\left(\frac{U_{(n)}}{V_{(n)}}\right)$.

Proof: Elementary.
Proposition 5: Let $r>0$ and let $U_{(n)}=\sum_{j=n}^{\infty} \frac{1}{j^{1+r}}$. Then $n^{r} U_{(n)}$ decreasing, $(n-1)^{r} U_{(n)}$ increasing. Both tend to $\frac{1}{r}$ as $n \longrightarrow \infty$.

Proof: Let $u_{n}=\frac{1}{n^{1+r}}$ and $v_{n}=\int_{n-1}^{n} \frac{1}{t^{1+r}} d t$. Then $V_{(n+1)}=\frac{1}{r n^{r}}$. By the usual integral comparison,

$$
\frac{1}{r n^{r}} \leq U_{(n)} \leq \frac{1}{r(n-1)^{r}}
$$

which implies the stated limits. By Lemma 3, ($\left.\frac{u_{n}}{v_{n+1}}\right)$ is decreasing, so by Lemma 2(ii), $\frac{U_{(n)}}{V_{(n+1)}}=r n^{r} U_{(n)}$ is decreasing. Similarly, $\frac{U_{(n)}}{V_{(n)}}$ is increasing.

Remark: This is stated without proof in [1], Remark 4.10.

Theorem 3: If $w=\left(\frac{1}{n^{p}}\right), 0<p \leq 1$, then the Copson operator C is a bounded operator from $\ell_{1}(w)(d(w, 1))$ into itself. Also, we have

$$
M_{w, 1}(C)=\|C\|_{w, 1}=\|C\|_{\ell_{1}(w)}=\frac{1}{1-p}
$$

Proof: Since $r_{n}=\frac{w_{n}}{n}$, then

$$
\frac{r_{n}}{w_{n}}=\frac{W_{n}}{n w_{n}}=\frac{W_{n}}{n^{1-p}}
$$

Also, since W_{n} is the U_{n} of the Proposition 4, then $\frac{W_{n}}{n^{1-p}}$ increases with n and tends to $\frac{1}{1-p}$. Hence applying Proposition 2, we deduce that

$$
M_{w, 1}(C)=\|C\|_{w, 1}=\|C\|_{\ell_{1}(w)}=\frac{1}{1-p}
$$

Remark: When $p=1$, so that $w_{n}=\frac{1}{n}$, we have

$$
\frac{r_{n}}{w_{n}}=W_{n} \quad \longrightarrow \infty \quad(\text { as } n \longrightarrow \infty)
$$

so the Copson operator C is not a bounded operator on $d(w, 1)$, although of course is satisfies condition (2).

Theorem 4: Let w_{n} be defined by $W_{n}=$ n^{1-p}, where $0<p<1$. Then the Copson operator is a bounded operator from $d(w, 1)$ into itself. Also, we ahve

$$
\|C\|_{w, 1}=M_{w, 1}(C)=\frac{1}{1-p} .
$$

Proof: We now have

$$
R_{n}=\sum_{k=1}^{n} \frac{W_{k}}{k}=\sum_{k=1}^{n} \frac{1}{k^{p}},
$$

so the new $\frac{R_{n}}{W_{n}}$ is exactly the $\frac{r_{n}}{w_{n}}$ of Theorem 3 and Proposition 4 again gives the statement.

4. Continous Version of the Copson Opreator:

In this section, we consider the analogous problem for the continuous case concern the space $\mathrm{L}_{p}(w)$. In the continuous case, the Copson operator C is given by:

$$
(C f)(x)=\int_{x}^{\infty} \frac{f(t)}{t} d t .
$$

Let $w(x)$ be a decreasing, non-negative function on $(0, \infty)$. We assume that $W(x)=\int_{0}^{x} w(t) d t$ is finite for each x (Hence $\frac{1}{x^{\alpha}}$ is permited for $0<$ $\alpha<1$, but not for $\alpha=1$.). Then $\mathrm{L}_{p}(w)$ is the space of functions f having

$$
\int_{0}^{\infty} w(x)|f(x)|^{p} d x
$$

convergent, with norm

$$
\|f\|_{\mathrm{E}_{P}(w)}=\left(\int_{0}^{\infty} w(x)|f(x)|^{p} d x\right)^{1 / p}
$$

Proposition 6: Let $f \geq 0$ be in $\mathrm{E}_{p}(w), a(x)=$ $\frac{w(x)}{W(x)} f(x)$, and also $A_{\infty}(x)=\int_{x}^{\infty} a(t) d t$. Then $A_{\infty}(x)$ is finite and also we have:

$$
\left\|A_{\infty}\right\|_{\mathrm{E}_{p}(w)} \leq p\|f\|_{\mathrm{E}_{p}(w)} .
$$

Proof: Fix x_{0}. For any $x<x_{0}$, let $\int_{x}^{x_{0}} a(t) d t=$ $A_{x_{0}}(x)$. Then $\frac{d}{d x} A_{x_{0}}(x)^{p}=-p A_{x_{0}}(x)^{p-1} a(x)$, and so

$$
\begin{aligned}
A_{x_{0}}(x)^{p} & =A_{x_{0}}(x)^{p}-A_{x_{0}}\left(x_{0}\right)^{p} \\
& =p \int_{x}^{x_{0}} A_{x_{0}}(t)^{p-1} a(t) d t .
\end{aligned}
$$

Hence, applying Holder's inequality, we deduce that:

$$
\begin{aligned}
\int_{0}^{x_{0}} w(x) A_{x_{0}}(x)^{p} d x & = \\
p \int_{0}^{x_{0}} w(x) \int_{x}^{x_{0}} A_{x_{0}}(t)^{p-1} a(t) d t d x & = \\
p \int_{0}^{x_{0}} A_{x_{0}}(t)^{p-1} a(t) \int_{0}^{t} w(x) d x d t & = \\
p \int_{0}^{x_{0}} A_{x_{0}}(t)^{p-1} a(t) W(t) d t & = \\
p \int_{0}^{x_{0}} w(t) A_{x_{0}}(t)^{p-1} a(t) f(t) d t & \leq
\end{aligned}
$$

$p\left(\int_{0}^{x_{0}} w(t) f(t)^{p} d t\right)^{1 / p}\left(\int_{0}^{x_{0}} w(t) A_{x_{0}}(t)^{p} d t\right)^{1 / p^{*}}$.
Therefore

$$
\left(\int_{0}^{x_{0}} w(t) A_{x_{0}}(t)^{p} d t\right)^{1 / p} \leq p\|f\|_{\mathbf{L}_{p}(w)} .
$$

The above inequality is true for all $x_{0}>0$, and so true with x_{0} replacing by infinity. This completes the proof.
Proposition 7: If $\frac{W(x)}{w(x)} \leq r_{1}(w) \quad(\forall x>0)$, then

$$
\|C\|_{\mathrm{L}_{p}(w)} \leq p r_{1}(w) .
$$

Proof: We have

$$
\frac{1}{t} \leq r_{1}(w) \frac{w(t)}{W(t)}
$$

and so

$$
(C f)(x) \leq r_{1}(w) \int_{x}^{\infty} \frac{w(t)}{W(t)} f(t) d t=r_{1}(w) A_{\infty}(x) .
$$

This establishes the statement.
Theorem 5: If $w(x)=\frac{1}{x^{\alpha}}$, where $0 \leq \alpha<1$, then

$$
\|C\|_{\mathrm{E}_{p}(w)}=\frac{p}{1-\alpha} .
$$

Attained by action of C on decreasing positive functions.
Proof: (i) We have $W(x)=\frac{x^{1-\alpha}}{1-\alpha}$, and so

$$
\frac{W(x)}{x w(x)}=\frac{1}{1-\alpha} \quad(\forall x>0) .
$$

Hence

$$
\|C\|_{\mathrm{E}_{p}(w)} \leq \frac{p}{1-\alpha} .
$$

(ii) Now, by taking $\varepsilon>0$, and define r by: $\alpha+r p=1+\varepsilon$, we deduce that:

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{x^{r}} & \text { for } x \geq 1 \\
1 & \text { for } 0 \leq x<1 .
\end{array}\right.
$$

Then f is decreasing and in $\mathrm{E}_{p}(w)$, since $\int_{0}^{1} \frac{1}{x^{\alpha}} d x$ and $\int_{0}^{\infty} \frac{1}{x^{\alpha+r p}} d x$ are convergent. Also, we have:

$$
(C f)(x)=\int_{x}^{\infty} \frac{1}{t^{r+1}} d t=\frac{1}{r x^{r}} \quad \text { for } x \geq 1
$$

and also we have:

$$
(C f)(x) \geq(C f)(1)=\frac{1}{r} \quad \text { for } 0<x<1
$$

Hence $(C f)(x) \geq \frac{1}{r} f(x) \quad(\forall x>0)$, and so

$$
\|C f\|_{\mathrm{E}_{p}(w)} \geq \frac{1}{r}\|f\|_{\mathrm{E}_{P}(w)}
$$

where $\frac{1}{r}=\frac{p}{1-\alpha+\varepsilon}$. Now, applying (i) and (ii) implies the statement.

References

[1] G. Bennett, Factorizing the Classical Inequalities, Mem. Amer. Math. Soc. 1996.
[2] G. Bennett, Inequalities complementary to Hardy, Quart. J. Math. Oxford (2) 49(1998), 345-432.
[3] G. Bennett, Lower bounds for matrices II, Canadian J. Math. 44 (1992), 54-74.
[4] G. Bennett, Some elementary inequalities, Quart. J. Math. Oxford (2) 38 (1987), 401425.
[5] E. T. Copson, Notes on series of positive terms, J. London Math. Soc. 2(1927), 9-12.
[6] G. H. Hardy, J. Littlewood and G. Polya, Inequalities, Cambridg Univ. Press, 2001.
[7] G.J.O. Jameson and R. Lashkaripour, Norms of certain operators on weighted ℓ_{p} spaces and Lorentz sequence spaces, Journal of inequalities in Pure and Applied Maths. Volum3, Issue 1, 2002 Article 6(1-17).
[8] R. Lashkaripour, Lower bounds and norms of operators on Lorentz sequence spaces, Doctoral dissertation (Lancaster, 1997).
[9] R. Lashkaripour, Operators on Lorentz sequence spaces I, Indian Journal of Pure and Applied Mathematics, to appear.
[10] R. Lashkaripour, Weighted Mean Matrix on Weighted Sequence Spaces, WSEAS TRANSACTION on MATHEMATICS, Issue 4, Volume 3, (2004), 789-793.
[11] S. Reisner, A factorization theorem in Banach lattices and its applications to Lorentz spaces, Ann. Inst. Fourier 31(1981), 239255.

