
Non-Linear Data for Neural Networks Training and Testing

ABDEL LATIF ABU-DALHOUM MOHAMMED SADIQ AL-RAWI
Computer Science Dept,

King Abdullah the Second School for Information Technology.
Jordan University

Amman 11942, P.O. Box 13496, JORDAN

Abstract: - Highly nonlinear data sets are important in the field of artificial neural networks. It is not feasible
to design a neural network and try to classify some real world data directly with that network. N-bit parity is
one of the oldest data used to train and test neural networks. The simplest is the 2-bit parity also known as the
XOR classification problem. Some researchers say that N-bit parity s set though highly nonlinear it is a simple
task to learn by neural networks, others were drifted to tailor special purpose neural networks to solve only the
N-bit parity problem without explaining why there is such a need. Is it possible to judge the N-bit parity is a
simple data due to the fact that it can be modeled by a deterministic finite accepter? Moreover, should patterns
that are in the form of context free which require a pushdown automaton, or context-sensitive and recursively
enumerable that require a Turing machine be harder to learn by neural networks? The aim of this paper is to
focus on and propose some complex nonlinear data to be used in training and testing of neural networks. The
most important in these parity data is that the developer can tune the complexity of nonlinearity through
various amounts of degrees; the user can select various numbers of categories, huge number of pattern
samples, and many hybrid symbols. Testing for various neural networks and their generalization and ability to
classify unseen patterns can be more effective. Experimental results on the classification of prime numbers
showed that neural networks can learn the classification of prime numbers.

Key-Words: - Neural Networks, nonlinear separable, hybrid N-parity, prime numbers classification, E1
problem, All symbol-parity, hybrid symbol-parity.

1 Introduction

The N-bit parity is a typical classification problem
addressed in neural networks literature. N-bit parity
is a mapping defined on 2N distinct binary vectors
that indicates whether the sum of the N components
of a binary vector is odd or even (if the sum is odd
the input vector is classified as the first category,
else input vector belongs to the second category).
This simply constructed data, linearly inseparable,
was used by various researchers in training and
testing neural networks.

The parity problem is a very difficult task for neural
networks to learn with generalization [1][2][3][4].
The aim of N-bit parity is to test neural network
approaches that would be able to solve problems of
unknown linearity. Neural networks should do this
automatically without any elegant network topology
design. What is the importance of carefully
designing a network to solve the N-bit parity,
especially if such networks cannot be trained with
backpropagation (or any other training method). One

question introduced in this literature whether N-bit
parity classification has any direct real world
application? No answer can be found, and if so, we
can perform the task with logical operators, or a
simple counter. The simplest parity problem is the 2-
bit parity (also known as the XOR problem). The
classical Parallel Distributed Processing textbook [1]
states that a multi layer feedforward neural network
trained with backpropagation needs at least N
hidden layer neurons to solve the N-bit parity.
Recent works show that using some shortcut
connections and/or non-standard activation
function(s) the N-bit parity could be solved with less
than N hidden neurons [2]. In fact, the problem can
be solved with one output neuron if a non-
differentiable activation function is used [3]. More
sophisticated studies [3][4] used the triple parity
such that three symbols are used {0,1,2} to generate
strings, and if 0’s, 1’s, and 2’s are even they are
classified (accepted) as the target class, otherwise
they should be rejected. The triple parity benchmark
had been used to test generalization and pruning of

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp466-471)

recurrent neural networks. Many works [5]
emphasize that N-bit parity is a simple task for the
neural network to learn and can be performed via a
random search method on a recurrent neural
network. Therefore, despite the complexity of N-bit
parity, they [5] argued that this is a simple problem
for neural networks to learn and more complicated
(nonlinear) data are needed to train and test neural
networks. However, [6][7][8][9][10][11][12][13]
showed that many neural networks experimentations
have been performed using N-bit parity data.

The aim of this paper is to propose many data sets
with complex nonlinearity. Some data may be
derived from regular, context-free, and/or context
sensitive languages (knowing that N-bit parity is a
form of regular language). All the proposed data sets
are highly nonlinear and they provide a large data
benchmark for training and testing neural networks.

2 Data with Complex Nonlinearly
To investigate neural networks ability to learn with
generalization (their ability to classify unseen
samples), researchers used N-bit parity and other
artificial data. In this section, we propose several
other data sets based on N-symbol-parity (N-parity)
rather N-bit parity. The N-parity is more
complicated than N-bit parity due to the use of many
symbols in the parity check. Some of the proposed
N-Parity problems are as described in the following
sections.

2.1 Hybrid N-Parity problem (HNP)
This is a data set that mixes symbols that are used
for parity check {-1, 1} and the one that is not used
in parity check {0} the HNP. This set is defined as
follows

Definition of HNP: Let }1,0,1{−=∑ be the set of
alphabets used to derive the string s such that

+. ∑s , N=s . If the total number of categories

is four 1. ,…, 4. that denotes the first to the fourth
category respectively, and -1’s and 1’s are counted
for parity then the four categories are as given
below

1 1 -1

2 1 -1

4 1 -1

3 1 -1

: n () is odd and n () is odd

: n () is odd and n () is even

: n () is even and n () is odd

: n () is even and n () is even

.

.

.

.

. .

. .

. .

. .

s s s

s s s

s s s

s s s

, (1)

where
1n () s and

-1n () s represent the number of 1’s

and -1’s in s respectively

Note: * .+∑ = ∑ − , where . is an empty string

and *∑ denotes the set of strings (pattern samples
in this paper) obtained by concatenating . or more
symbols from ∑ . It is obvious that the total number

of samples is Nn . Neural networks training and
testing for the HNP have been discussed previously
in [14].

2.2 All symbol parity (ASP)
This is a modification of the classical N-bit parity.
The AS P is defined as follows:

Definition of ASP: Let },,,{ 110 −=∑ naaa … be the

set of alphabets used to derive pattern samples such

that a pattern sample +. ∑s with N=s . If

| |n = Σ , then the total number of pattern samples is
Nn that are classified into c categories as follows

1 1

2 2

:

:

: cc

 D() d

 D() d

 D() d

.

.

.

. . =

. . =

. . =

s s

s s

s s

" "
, (2)

where {0,1,...,2 1}n

id . − for 1,...,i c= such that

1 2 ... cd d d. . . , (p)D DecimalOf)(=s , and

)()()()(
0121

ssss aanana bbbbp …
−−

= is a binary

number concatenated from ()at
b s which is given by

0 the number of in is odd

()
1 the number of in is even

t
at

t

a
b

a

.
=  .

s
s

s
, (3)

for 0,1,2,..., 1t n= − . It is obvious that the above
ASP offers a wide range of nonlinearity with
different degrees of complexities. May be it is better
to express the ASP as a function of N and n ,
therefore, we write ASP(,)N n . It is easy to show

that 2nc = for N n= . Below, we demonstrate a
simple example of generating some ASP data set.
The data generated is highly nonlinear and other
higher orders can be generated too.

Example 1: Let ,4Σ = {0,1, 2,3 } , | | 2N = =s , and

5n = then the pattern samples {00,01,02,..., 44} of

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp466-471)

ASP(2,5) are classified into eleven categories as
shown below in Table 1:

Table 1: The ASP(2,5) data set

. 1 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.
00,
11,
22,
33,
44

01,
10

02,
20

03,
30

04,
40

12,
21

13,
31

14,
41

23,
32

24,
42

34,
43

2.3 Hybrid symbol N-Parity (HSNP)
This is yet another modification to the ASP in which
some of the symbols are only padded to the pattern
samples without being counted for parity check, the
same as the {0} role in the HNP. The definition of
HSNP is as follows

Definition of HSNP: Let },,,{ 110 −=∑ naaa … be

the set of alphabets used to derive pattern samples

such that a pattern sample +.Σs with N=s . The

included set . to be used in the parity check is a
subset from ∑ and can be selected as desired, let

, ,..., , }i j r sa a a a. = { , such that .=k . The set of

symbols excluded from parity check is .−∑=. ,

and kn −=. . If | |n = Σ , the total number of

pattern samples is Nn that are classified into c
categories as follows:

1 1

2 2

:

:

: cc

 D() d

 D() d

 D() d

.
.

.

. . =

. . =

. . =

s s

s s

s s

" "
, (4)

where id is a decimal integer obtained from

{0,1,..., 2 1}k
id . − , for 1,...,i c= such that

1 2 ... cd d d. . . , (p)D DecimalOf)(=s , and

() () () ()a a a ar si j
p b b b b= s s s s… is a binary

number concatenated from ()at
b s which is given in

(3). It is easy to show that 2kc = for N k= .

Yet another wide range of complex nonlinearity, the
user should select how many symbols to include in
the parity check. Again, it is better to superscript the
HSNP to be),,HSNP(knN . To such a case, the

HNP is defined as)2,3,HSNP(N , where

}1,0,1{−=∑ , }1,1{−=. , }0{=. , N=s .

Moreover, ASP(N,n) HSNP()N, n,n= that is
including all the symbols results in the ASP. Also,
HSNP(N, 2, 1) for }1,0{=∑ , }1{=. , }0{=. ,

N=s is the N-bit parity data set. Last but not

least, HSNP(2,2,1) is the so called XOR data set.
For bipolar data, we can replace }1,0{=∑ with

}1,1{−=∑ where }1{−=. without any
problem. The below example demonstrates the
generation of HSNP(2,5,2).

Example 2: Let ,4Σ = {0,1,2,3 } , 5n = , , 2}. = {1 ,

2k = , and | | 2N = =s , then the pattern samples

{00,01,02,..., 44} are classified into four categories

(since N k= we will have 2k categories which is
four) according to HSNP(2,5,2) as shown below in
Table 2:

Table 2: The HSNP (2,5,2) data set

. 1 2. 3. 4.

00,
11,
22,
33,
44,
03,
30,
04,
40,
34,
43

01,
10,
14,
41,
13,
31

02,
20,
23,
32,
24,
42

12,
21

2.4 Dichotomized hybrid symbol N-Parity
(DHSNP)
Another modification can be done to the

)HSNP(kn,N, such that the number of categories
is two as follows:

Definition of DHSNP Let },,,{ 110 −=∑ naaa … be

the set of alphabets used to derive pattern samples

such that a pattern sample +. ∑s with N=s .

The included set . to be used in the parity check is
a subset from ∑ and can be selected as desired, let

, ,..., , }i j r sa a a a. = { , such that .=k . The set of

symbols excluded from parity check is .−∑=. ,

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp466-471)

therefore, kn −=. . If | |n = Σ , then the total

number of pattern samples is Nn that are classified
into two categories as follows

1 1

2 1

: n () is even

: n () is odd

p

p

.

.
. .
. .

s

s
, (5)

where () () ()... () ()a a a a ar si j t

p b b b b b= s s s s s…

is a binary number concatenated from ()at
b s which

is given in (3).

2. 5 The =1 (E1) problem
The =1, is a famous data set used with neural
networks. We can define the =1 problem according
to the previous notations as below
Definition of E1: Let },,,{ 110 −=∑ naaa … be the

set of alphabets used to derive pattern samples such

that a pattern sample +. ∑s with N=s . The

included set is }{ ja=. where ja .Σ . The total

number of pattern samples is Nn can be classified
into two categories as follows

1

2

: the number of in is 1

: otherwise
ja.

.
. .
.

s s

s
. (6)

The famous (=1) problem is the one such that

1=ja and all other alphabets are set to 0 which is a

subset of the E1 problem given above.

2.6 Prime number problem (PNP)
This data set contains the binary representation of
decimals. The task is that neural network should
learn the classification a decimal numbers into
prime numbers or not.

Definition of PNP: Let }1,0{=∑ be the set of
alphabets used to derive the string s such that

+. ∑s , if the total number of categories is two; 1.

denotes the first category and 2. denotes the
second category, then

1

2

 DecimalOf() is prime

 otherwise

.

.
. .
.

s s

s
. (7)

A neural network that can learn to classify the above
problem would be a marvels prime number
generator (provided that it is efficient) which can be

used in number theory and in applications related to
public key encryption, or symmetric encryption.
Below is an example of a limited set.

Example 3: Let Σ = {0,1} , | | 3=s , then the PNP
via binary representation as inputs to neural
networks. Three inputs should be used for the neural
network, see the below PNP data in Table 3.

Table 3: The PNP for n=2.

 . 1 2.

000 100 001 011 110 010 101 111

Example 4: Using decimal representation (0 to 7) as
inputs to neural networks, only one input is needed.
See Table 4 for illustration.

Table 4: The prime classification problem using decimal
representation

 . 1 2.

0 1 4 6 2 3 5 7

The PNP will be used in neural network training and
testing in this paper in order to show the complexity
and the learning ability of this data.

3 Experimental Results
The PNP data set presented in this paper has been
used in training and testing many neural networks
with different networks topologies. The table below
demonstrates the performance of using the PNP data
set in neural networks training and testing. As for
neural networks, we used a feedforward neural
network [11] in training and testing. SCG 16-10-1
refers to the neural network such that the number of
inputs is one, number of hidden neurons is 10, and,
the number of outputs is one (the input string is
either prime or not). The method used for optimizing
the neural network is the conjugate gradient descent
[12][13]. Results obtained using the PNP for strings
of size 16 are shown in Table 5.

As shown in Table 5, decimal numbers are
converted into binary each of length 16 bit, then
strings representing decimals from 0 to 1000 have
been used in training, and strings representing
decimals from 3000 to 40000 and strings
representing decimals from 64000 to 65000 have
been used in testing. The aim is to classify a decimal
as being prime number or not. In Table 6, we

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp466-471)

implemented the same experiments and show that
using decimal numbers as training data for neural
networks, the network is unable to classify decimal
numbers into prime or not. No successful learning
happens and all networks we tried did not converge.

Table 5. Experimental results of the classification of decimal
numbers into prime or non-prime according to their binary
string representation (the PNP problem). SCG 16-10-1 stands
for the feedforward neural network with 16 inputs, 80 hidden
neurons, and one output neuron that is trained with scaled
conjugate gradient.

Neural
Network
Used/
Topology

Training
set
Decimal
numbers
from-to

Testing
set
Decimal
numbers
from-to

Correct
Recognition
on the
testing set

Min
Error
goal

SCG
16-20-1

0-1000 0-1000 983/1001 0.06

SCG
16-10-1

0-1000 0-1000 995/1001 0.13

SCG
16-10-1

0-1000 3000-
4000

807/1001 0.13

SCG
16-10-1

0-1000 64000-
65000

819/1001 0.13

SCG
16-80-1

0-1000 3000-
4000

812/1001 0.03

SCG
16-80-1

0-1000 0-1000 993/1001 0.03

SCG
16-5-1

0-1000 64000-
65000

730/1001 0.02

SCG (#0)
4-2-1

0-15 0-15 16/16 2E-7

(#0) In this experiment, only 4 bits are used since the decimals
are from 0 to 15.

Table 6. Experimental results of the classification of decimal
numbers into prime or non-prime according to decimal value
representation. SCG 1-5-1 stands for the feedforward neural
network with one input, five hidden neurons, and one output
neuron that is trained with scaled conjugate gradient.

Neural
Network
Used/
Topology

Training
set
Decimal
numbers
from-to

Testing
set
Decimal
numbers
from-to

Correct
Recognition
on the
testing set

Min
Error
reached

SCG
1-5-1

0-15 0-15 7/16 0.40

SCG
1-20-1

0-15 0-15 16/16 4E-7

SCG
1-80-1

0-1000 0-1000 18/1001 0.54 (#1)

SCG
1-160-1

0-1000 0-1000 733/1001 0.48

SCG
(#2)

1-80-1

0-1000 0-1000 200/1001 0.52

SCG
(#2)

1-160-1

0-1000 0-1000 413/1001 0.45

(#1) The minimum error after training is 0.5, no convergence
happened within more than 20000 epochs. (#2) Statistical
normalization to zero mean and unit variance has been
performed so that all decimals are real numbers lying in
between -1 and 1.

The prime number classification needs more work to
improve the accuracy of the classification. As can be

seen in Table 5, of accuracy classifying prime
numbers is more than 95% for using the training set
in testing, while obtaining more than 80% of
accuracy when using disjoint training and testing
sets.. Each of the above experiments is repeated up
to 10 times and the recognition accuracy shown is
the average. Thousands of samples have been used
in training and testing.

Many other experiments have been performed using
only decimals from 0 to 15. In this experiment the
neural network did learn both the decimal
representation data set and the binary (PNP)
representation set. The failure for neural networks to
learn large numbers that are presented as direct or
normalized decimals suggests that the neural
network (when learning small set of decimals) is
working as an associative memory knowing that the
number of weights of the network in this case is
greater than the learned decimals.

4 Conclusions
For any classification problem, the computer should
perform heuristic searches on neural networks to
find the optimum (or best) weights and topology
with little human intervention as much as possible.
In addition to the proposed new data sets, we
conclude that more elaborated work should be done
to train and test neural networks, by tackling high
nonlinear, high dimensional data, i.e., 10-bit parity
(1024 pattern samples), 20-bit parity (more than one
million pattern sample). These data are to be
classified according to the proposed classification
problems stated in this paper, i.e., HNP, ASP,
HSNP, DHSNP, and/or PNP. Then, divide the bulk
of data into three parts; training, cross validation,
and testing. In doing this it is possible to measure
the strategic methods used to initialize and train
neural networks.

As for the classification of prime numbers, it is a
very hard problem to learn with neural networks,
finding better ways to teach neural networks may
serve other fields that require the generation of large
prime numbers efficiently. Neural networks should
learn the classification task by looking into the bit
patterns rather than using some special purpose
algorithm whether it is an efficient or exhaustive
search for prime number method. On using decimals
from 1 to 1000 (some are prime numbers others are
not) 83% of accuracy have been obtained for testing
decimals with the ranges 64000 to 65000, and 74%
of accuracy have been obtained for testing decimals

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp466-471)

with the ranges 3000 to 4000. It is obvious that all
training and testing sets used are disjoint. It is
amazing how neural networks can learn to classify
prime numbers from their binary representation,
since in well structured algorithms the prime number
should be non divisible by all decimals but itself and
one. Reaching a classification rate of 74% or 83% is
very promising, yet needs more investigation. It is
worth mentioning that neural networks could not
learn the prime classification problem using the
direct decimal representations (as an Arabic
numeral), therefore, it is our hope as we showed in
the experimental results that the data is complex
nonlinearity but solvable with neural networks.
Training and testing of all the proposed data sets in
this paper is left as a future work.

References:
[1] D.E. Rumelhart, and J.L.McClelland, Parallel

Distributed Processing, Vol. 1, Cambridge,
MA: MIT press, 1986.

[2] R.Setiono, On The Solution Of The Parity
Problem By A Single Hidden Layer
Feedforward Neural Network, Neurocomputing
Vol.16, No.3, 1997, pp. 225-235.

[3] M. E. Hohil, D. Liu and S. H. Smith, Solving
the N-bit parity problem using neural networks,
Neural Networks, Vol.12, No.9, 1999, pp. 1321-
1323.

[4] C.L.Giles, and C.W.Omlin, Pruning Recurrent
Neural Networks for Improved Generalization
Performance, IEEE transactions on neural
networks, Vol.5, No.5, 1994, pp. 848-855.

[5] S. Hochreiter, and J. Schmidhuber, LSTN Can
Solve Hard Long Time Lag Problems, In Mozer,
M.C.,. Jordan, M.I, Petsche, T. eds., Advances

in Neural Information Processing Systems 9,
NIPS'9, Cambridge MA: MIT Press, 1997, pp.
473-479.

[6] D.Liu, M.E.Hohil, and S.H.Smith, N-bit parity
neural networks:new solutions based on linear
programming, Neurocomputing, Vol.48, 2002,
pp. 477–488.

[7] E. Lavretsky, On The Exact Solution Of The
Parity-N Problem Using Ordered Neural
Networks, Neural Networks, Vol. 13, 2000, pp.
643–649.

[8] M.Z.Arslanov, D.U.Ashigaliev, and E.E.Ismail,
N-bit parity ordered neural networks,
Neurocomputing, Vol.48, 2002, pp. 1053 –1056.

[9] L. Franco, and S. A. Cannas, Generalization
Properties of Modular Networks: Implementing
the Parity Function, IEEE transactions on
neural networks, Vol.12, No.6, 2001, pp.1306-
1313.

[10] T. Nitta, Solving The XOR Problem And The
Detection Of Symmetry Using A Single
Complex-Valued Neuron, Neural Networks,
Vol.16, No,8, 2003, pp. 1101-1105 .

[11] J. Elman, Finding Structure in Time, Cognitive
Science, Vol.14, 1990, pp. 179-211.

[12] M.F. Mller, A Scaled Conjugate Gradient
Algorithm for Fast Supervised Learning, Neural
Networks, Vol.6, No.4, 1993, pp.525-533.

[13] M.T. Hagan, H.B. Demuth, and M.H. Beale,
Neural Network Design, Boston, MA: PWS
Publishing, 1996.

[14] M. Al-Rawi, A Neural Network To Solve The
Hybrid N-Parity: Learning With Generalization
Issues, Neurocomputing, Vol.68, 2005, pp. 273-
280.

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp466-471)

