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Abstract: -  Highly nonlinear data sets are important in the field of artificial neural networks. It is not feasible 
to design a neural network and try to classify some real world data directly with that network. N-bit parity is 
one of the oldest data used to train and test neural networks. The simplest is the 2-bit parity also known as the 
XOR classification problem. Some researchers say that N-bit parity s set though highly nonlinear it is a simple 
task to learn by neural networks, others were drifted to tailor special purpose neural networks to solve only the 
N-bit parity problem without explaining why there is such a need. Is it possible to judge the N-bit parity is a 
simple data due to the fact that it can be modeled by a deterministic finite accepter? Moreover, should patterns 
that are in the form of context free which require a pushdown automaton, or context-sensitive and recursively 
enumerable that require a Turing machine be harder to learn by neural networks? The aim of this paper is to 
focus on and propose some complex nonlinear data to be used in training and testing of neural networks. The 
most important in these parity data is that the developer can tune the complexity of nonlinearity through 
various amounts of degrees; the user can select various numbers of categories, huge number of pattern 
samples, and many hybrid symbols. Testing for various neural networks and their generalization and ability to 
classify unseen patterns can be more effective. Experimental results on the classification of prime numbers 
showed that neural networks can learn the classification of prime numbers. 
 
Key-Words: - Neural Networks, nonlinear separable, hybrid N-parity, prime numbers classification, E1 
problem, All symbol-parity, hybrid symbol-parity. 
 

 
 

1  Introduction 
 

The N-bit parity is a typical classification problem 
addressed in neural networks literature. N-bit parity 
is a mapping defined on 2N distinct binary vectors 
that indicates whether the sum of the N components 
of a binary vector is odd or even (if the sum is odd 
the input vector is classified as the first category, 
else input vector belongs to the second category). 
This simply constructed data, linearly inseparable, 
was used by various researchers in training and 
testing neural networks.  
 
The parity problem is a very difficult task for neural 
networks to learn with generalization [1][2][3][4]. 
The aim of N-bit parity is to test neural network 
approaches that would be able to solve problems of 
unknown linearity. Neural networks should do this 
automatically without any elegant network topology 
design. What is the importance of carefully 
designing a network to solve the N-bit parity, 
especially if such networks cannot be trained with 
backpropagation (or any other training method). One  

 

question introduced in this literature whether N-bit 
parity classification has any direct real world 
application? No answer can be found, and if so, we 
can perform the task with logical operators, or a 
simple counter. The simplest parity problem is the 2-
bit parity (also known as the XOR problem). The 
classical Parallel Distributed Processing textbook  [1] 
states that a multi layer feedforward neural network 
trained with backpropagation needs at least N 
hidden layer neurons to solve the N-bit parity. 
Recent works show that using some shortcut 
connections and/or non-standard activation 
function(s) the N-bit parity could be solved with less 
than N hidden neurons [2]. In fact, the problem can 
be solved with one output neuron if a non-
differentiable activation function is used [3]. More 
sophisticated studies  [3][4] used the triple parity 
such that three symbols are used {0,1,2} to generate 
strings, and if 0’s, 1’s, and 2’s are even they are  
classified (accepted) as the target class, otherwise 
they should be rejected. The triple parity benchmark 
had been used to test generalization and pruning of 
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recurrent neural networks. Many works [5] 
emphasize that N-bit parity is a simple task for the 
neural network to learn and can be performed via a 
random search method on a recurrent neural 
network. Therefore, despite the complexity of N-bit 
parity, they [5] argued that this is a simple problem 
for neural networks to learn and more complicated 
(nonlinear) data are needed to train and test neural 
networks. However, [6][7][8][9][10][11][12][13] 
showed that many neural networks experimentations 
have been performed using N-bit parity data. 
 
The aim of this paper is to propose many data sets 
with complex nonlinearity. Some data may be 
derived from regular, context-free, and/or context 
sensitive languages (knowing that N-bit parity is a 
form of regular language). All the proposed data sets 
are highly nonlinear and they provide a large data 
benchmark for training and testing neural networks. 
 
 

2  Data with Complex Nonlinearly  
To investigate neural networks ability to learn with 
generalization (their ability to classify unseen 
samples), researchers used N-bit parity and other 
artificial data. In this section, we propose several 
other data sets based on N-symbol-parity (N-parity) 
rather N-bit parity. The N-parity is more 
complicated than N-bit parity due to the use of many 
symbols in the parity check. Some of the proposed 
N-Parity problems are as described in the following 
sections. 
 
2.1 Hybrid N-Parity problem (HNP) 
This is a data set that mixes symbols that are used 
for parity check {-1, 1} and the one that is not used 
in parity check {0} the HNP. This set is defined as 
follows  
 
Definition of HNP: Let }1,0,1{−=∑ be the set of 
alphabets used to derive the string s  such that 

+. ∑s , N=s . If the total number of categories 

is four 1. ,…, 4.  that denotes the first to the fourth 
category respectively, and -1’s and 1’s are counted 
for parity then the four categories are as  given 
below 
 

1 1 -1

2 1 -1

4 1 -1

3 1 -1

: n ( ) is odd  and n ( ) is odd

: n ( ) is odd  and n ( ) is even

: n ( ) is even and n ( ) is odd

: n ( ) is even and n ( ) is even

.

.

.

.

. .

. .

. .

. .

s s s

s s s

s s s

s s s

,  (1) 

 

where 
1n ( ) s  and 

-1n ( ) s represent the number of 1’s 

and -1’s in s  respectively 

Note: * .+∑ = ∑ −  , where .  is an empty string 

and *∑  denotes the set of strings (pattern samples 
in this paper) obtained by concatenating .  or more 
symbols from ∑ . It is obvious that the total number 

of samples is Nn . Neural networks training and 
testing for the HNP have been discussed previously 
in [14]. 
 
2.2 All symbol parity (ASP) 
This is a modification of the classical N-bit parity. 
The AS P is defined as follows: 
 
Definition of ASP: Let },,,{ 110 −=∑ naaa …  be the 

set of alphabets used to derive pattern samples such 

that a pattern sample +. ∑s  with N=s . If 

| |n = Σ , then the total number of pattern samples is 
Nn  that are classified into c  categories as follows 

 

1 1

2 2

:  

:  
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 D( ) d
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where  {0,1,...,2 1}n

id . −  for  1,...,i c=  such that 

1 2 ... cd d d. . . , (p)D DecimalOf)( =s , and 

)()()()(
0121

ssss aanana bbbbp …
−−

=  is a binary 

number concatenated from ( )at
b s  which is given by 

 
0   the number of  in    is odd 

( )
1     the number of  in    is even 

t
at

t

a
b

a

.
=  .

s
s

s
, (3) 

 
for 0,1,2,..., 1t n= − . It is obvious that the above 
ASP offers a wide range of nonlinearity with 
different degrees of complexities. May be it is better 
to express the ASP as a function of N  and n , 
therefore, we write ASP( , )N n . It is easy to show 

that 2nc =  for N n= . Below, we demonstrate a 
simple example of generating some ASP data set. 
The data generated is highly nonlinear and other 
higher orders can be generated too. 
 
Example 1: Let ,4Σ = {0,1, 2,3 } , | | 2N = =s , and 

5n =  then the pattern samples {00,01,02,..., 44}  of 
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ASP(2,5) are classified into eleven categories as 
shown below in Table 1: 
 

Table  1: The ASP(2,5) data set  

. 1  2.  3.  4.  5.  6.  7. 8.  9.  10. 11.
00, 
11, 
22, 
33, 
44 
 

01, 
10 
 

02, 
20 

03, 
30 

04, 
40 

12, 
21 

13, 
31 

14, 
41 

23, 
32 

24, 
42 

34, 
43 

 
 
2.3 Hybrid symbol N-Parity (HSNP) 
This is yet another modification to the ASP in which 
some of the symbols are only padded to the pattern 
samples without being counted for parity check, the 
same as the {0} role in the HNP. The definition of 
HSNP is as follows 
 
Definition of HSNP: Let },,,{ 110 −=∑ naaa …  be 

the set of alphabets used to derive pattern samples 

such that a pattern sample +.Σs  with N=s . The 

included set .  to be used in the parity check is a 
subset from ∑  and can be selected as desired, let 

, ,..., , }i j r sa a a a. = { , such that .=k . The set of 

symbols excluded from parity check is .−∑=. , 

and kn −=. . If | |n = Σ , the total number of 

pattern samples is Nn  that are classified into c  
categories as follows: 
 

1 1

2 2

:  

:  
 

:  cc

 D( ) d

 D( ) d

 D( ) d

.
.
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. . =

. . =

. . =

s s

s s

s s

" "
,   (4) 

 
where id  is a decimal integer obtained from  

{0,1,..., 2 1}k
id . − , for  1,...,i c=  such that 

1 2 ... cd d d. . . , (p)D DecimalOf)( =s ,  and 

( ) ( ) ( ) ( )a a a ar si j
p b b b b= s s s s…  is a binary 

number concatenated from ( )at
b s  which is given in 

(3). It is easy to show that 2kc =  for N k= . 
 
Yet another wide range of complex nonlinearity, the 
user should select how many symbols to include in 
the parity check. Again, it is better to superscript the 
HSNP to be ),,HSNP( knN . To such a case, the 

HNP is defined as )2,3,HSNP(N , where 

}1,0,1{−=∑ , }1,1{−=. , }0{=. , N=s . 

Moreover, ASP(N,n) HSNP( )N, n,n=  that is 
including all the symbols results in the ASP. Also, 
HSNP(N, 2, 1) for }1,0{=∑ , }1{=. , }0{=. , 

N=s  is the N-bit parity data set. Last but not 

least, HSNP(2,2,1) is the so called XOR data set. 
For bipolar data, we can replace }1,0{=∑  with 

}1,1{−=∑  where  }1{−=.  without any 
problem. The below example demonstrates the 
generation of HSNP(2,5,2).  
 
Example 2: Let ,4Σ = {0,1,2,3 } , 5n = , , 2}. = {1 , 

2k = , and | | 2N = =s , then the pattern samples 

{00,01,02,..., 44}  are classified into four categories 

(since N k=  we will have 2k  categories which is 
four) according to HSNP(2,5,2) as shown below in 
Table 2: 
 

Table 2: The HSNP (2,5,2) data set 

. 1  2.  3.  4.  

00, 
11, 
22, 
33, 
44, 
03, 
30, 
04, 
40, 
34, 
43 
 

01, 
10, 
14, 
41, 
13, 
31 
 

02, 
20, 
23, 
32, 
24, 
42 

12, 
21 
 

 
 
2.4 Dichotomized hybrid symbol N-Parity 
(DHSNP) 
Another modification can be done to the 

)HSNP( kn,N,  such that the number of categories 
is two as follows: 

 
Definition of  DHSNP Let },,,{ 110 −=∑ naaa …  be 

the set of alphabets used to derive pattern samples 

such that a pattern sample +. ∑s  with N=s . 

The included set .  to be used in the parity check is 
a subset from ∑  and can be selected as desired, let 

, ,..., , }i j r sa a a a. = { , such that .=k . The set of 

symbols excluded from parity check is .−∑=. , 
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therefore, kn −=. . If | |n = Σ , then the total 

number of pattern samples is Nn  that are classified 
into two categories as follows 
 

1 1

2 1

:   n ( ) is even

:   n ( ) is odd

p

p

.

.
. .
. .

s

s
,   (5) 

 
where ( ) ( ) ( )... ( ) ( )a a a a ar si j t

p b b b b b= s s s s s…  

is a binary number concatenated from ( )at
b s  which 

is given in (3). 
 
2. 5 The =1 (E1) problem 
The =1, is a famous data set used with neural 
networks. We can define the =1 problem according 
to the previous notations as below 
Definition of E1: Let },,,{ 110 −=∑ naaa …  be the 

set of alphabets used to derive pattern samples such 

that a pattern sample +. ∑s  with N=s . The 

included set is }{ ja=.  where ja .Σ  . The total 

number of pattern samples is Nn  can be classified 
into two categories as follows 
 

1

2

:   the number of  in   is  1

:   otherwise
ja.

.
. .
.

s s

s
.  (6) 

 
The famous (=1) problem is the one such that 

1=ja  and all other alphabets are set to 0 which is a 

subset of the E1 problem given above. 
 

2.6 Prime number problem (PNP) 
This data set contains the binary representation of 
decimals. The task is that neural network should 
learn the classification a decimal numbers into 
prime numbers or not. 
 
Definition of PNP: Let }1,0{=∑  be the set of 
alphabets used to derive the string s  such that 

+. ∑s , if the total number of categories is two; 1.  

denotes the first category and 2.  denotes the 
second category, then  
 

1

2

  DecimalOf( ) is prime

 otherwise

.

.
. .
.

s s

s
. (7) 

 
A neural network that can learn to classify the above 
problem would be a marvels prime number 
generator (provided that it is efficient) which can be 

used in number theory and in applications related to 
public key encryption, or symmetric encryption. 
Below is an example of a limited set. 
 
Example 3: Let Σ = {0,1} , | | 3=s , then the PNP 
via binary representation as inputs to neural 
networks. Three inputs should be used for the neural 
network, see the below PNP data in Table 3. 
 

Table 3: The PNP for n=2. 

                . 1                        2.  

000 100 001 011 110 010 101 111 

 
 
Example 4: Using decimal representation (0 to 7) as 
inputs to neural networks, only one input is needed. 
See Table 4 for illustration. 
 
Table 4: The prime classification problem using decimal 
representation 

                . 1                       2.  

0 1 4 6 2 3 5 7 

 
The PNP will be used in neural network training and 
testing in this paper in order to show the complexity 
and the learning ability of this data. 

 
 

3  Experimental Results  
The PNP data set presented in this paper has been 
used in training and testing many neural networks 
with different networks topologies. The table below 
demonstrates the performance of using the PNP data 
set in neural networks training and testing. As for 
neural networks, we used a feedforward neural 
network [11] in training and testing. SCG 16-10-1 
refers to the neural network such that the number of 
inputs is one, number of hidden neurons is  10, and, 
the number of outputs is one (the input string is 
either prime or not). The method used for optimizing 
the neural network is the conjugate gradient descent 
[12][13]. Results obtained using the PNP for strings 
of size 16 are shown in Table 5. 
  
As shown in Table 5, decimal numbers are 
converted into binary each of length 16 bit, then 
strings representing decimals from 0 to 1000 have 
been used in training, and strings representing 
decimals from 3000 to 40000 and strings 
representing decimals from 64000 to 65000 have 
been used in testing. The aim is to classify a decimal 
as being prime number or not. In Table 6, we 
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implemented the same experiments and show that 
using decimal numbers as training data for neural 
networks, the network is unable to classify decimal 
numbers into prime or not. No successful learning 
happens and all networks we tried did not converge.  
 
Table 5. Experimental results of the classification of decimal 
numbers into prime or non-prime according to their binary 
string representation (the PNP problem). SCG 16-10-1 stands 
for the feedforward neural network with 16 inputs, 80 hidden 
neurons, and one output neuron that is trained with scaled 
conjugate gradient. 

Neural 
Network 
Used/ 
Topology 

Training 
set 
Decimal 
numbers 
from-to 

Testing 
set 
Decimal 
numbers 
from-to 

Correct 
Recognition 
on the 
testing set 

Min 
Error 
goal 

SCG  
16-20-1 

0-1000 0-1000 983/1001 0.06 

SCG  
16-10-1 

0-1000 0-1000 995/1001 0.13 

SCG  
16-10-1 

0-1000 3000-
4000 

807/1001 0.13 

SCG  
16-10-1 

0-1000 64000-
65000 

819/1001 0.13 

SCG  
16-80-1 

0-1000 3000-
4000 

812/1001 0.03 

SCG  
16-80-1 

0-1000 0-1000 993/1001 0.03 

SCG  
16-5-1 

0-1000 64000-
65000 

730/1001 0.02 

SCG (#0) 
4-2-1 

0-15 0-15 16/16 2E-7 

(#0) In this experiment, only 4 bits are used since the decimals 
are from 0 to 15. 
 
 
Table 6. Experimental results of the classification of decimal 
numbers into prime or non-prime according to decimal value 
representation. SCG 1-5-1 stands for the feedforward neural 
network with one input, five hidden neurons, and one output 
neuron that is trained with scaled conjugate gradient. 

Neural 
Network 
Used/ 
Topology 

Training 
set 
Decimal 
numbers 
from-to 

Testing 
set 
Decimal 
numbers 
from-to 

Correct 
Recognition 
on the 
testing set 

Min 
Error 
reached 

SCG 
1-5-1 

0-15 0-15 7/16 0.40 

SCG 
1-20-1 

0-15 0-15 16/16 4E-7 

SCG 
1-80-1 

0-1000 0-1000 18/1001 0.54 (#1) 

SCG 
1-160-1 

0-1000 0-1000 733/1001 0.48 

SCG    
(#2) 

1-80-1 

0-1000 0-1000 200/1001 0.52 

SCG    
(#2) 

1-160-1 

0-1000 0-1000 413/1001 0.45 

(#1) The minimum error after training is 0.5, no convergence 
happened within more than 20000 epochs. (#2)  Statistical 
normalization to zero mean and unit variance has been 
performed so that all decimals are real numbers lying in 
between -1 and 1. 
 
The prime number classification needs more work to 
improve the accuracy of the classification. As can be 

seen in Table 5, of accuracy classifying prime 
numbers is more than 95% for using the training set 
in testing, while obtaining more than 80% of 
accuracy when using disjoint training and testing 
sets.. Each of the above experiments is repeated up 
to 10 times and the recognition accuracy shown is 
the average. Thousands of samples have been used 
in training and testing. 
 
Many other experiments have been performed using 
only decimals from 0 to 15. In this experiment the 
neural network did learn both the decimal 
representation data set and the binary (PNP) 
representation set. The failure for neural networks to 
learn large numbers that are presented as direct or 
normalized decimals suggests that the neural 
network (when learning small set of decimals) is 
working as an associative memory knowing that the 
number of weights of the network in this case is 
greater than the learned decimals.  
 

 
4  Conclusions 
For any classification problem, the computer should 
perform heuristic searches on neural networks to 
find the optimum (or best) weights and topology 
with little human intervention as much as possible. 
In addition to the proposed new data sets, we 
conclude that more elaborated work should be done 
to train and test neural networks, by tackling high 
nonlinear, high dimensional data, i.e., 10-bit parity 
(1024 pattern samples), 20-bit parity (more than one 
million pattern sample). These data are to be 
classified according to the proposed classification 
problems stated in this paper, i.e., HNP, ASP, 
HSNP, DHSNP, and/or PNP. Then, divide the bulk 
of data into three parts; training, cross validation, 
and testing. In doing this it is possible to measure 
the strategic methods used to initialize and train 
neural networks.  
 
As for the classification of prime numbers, it is a 
very hard problem to learn with neural networks, 
finding better ways to teach neural networks may 
serve other fields that require the generation of large 
prime numbers efficiently. Neural networks should 
learn the classification task by looking into the bit 
patterns rather than using some special purpose 
algorithm whether it is an efficient or exhaustive 
search for prime number method. On using decimals 
from 1 to 1000 (some are prime numbers others are 
not) 83% of accuracy have been obtained for testing 
decimals with the ranges 64000 to 65000, and 74% 
of accuracy have been obtained for testing decimals 
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with the ranges 3000 to 4000. It is obvious that all 
training and testing sets used are disjoint. It is 
amazing how neural networks can learn to classify 
prime numbers from their binary representation, 
since in well structured algorithms the prime number 
should be non divisible by all decimals but itself and 
one.  Reaching a classification rate of 74% or 83% is 
very promising, yet needs more investigation. It is 
worth mentioning that neural networks could not 
learn the prime classification problem using the 
direct decimal representations (as an Arabic 
numeral), therefore, it is our hope as we showed in 
the experimental results that the data is complex 
nonlinearity but solvable with neural networks. 
Training and testing of all the proposed data sets in 
this paper is left as a future work. 
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