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1 Introduction  
Methods and techniques of optimization have been 
successfully used in various fields, and related to 
technical systems of relatively well-defined structure 
and behavior. The success has motivated a direct 
application of the systems in which a key role is 
played by human judgments, preferences, etc. 
Getting some good solution satisfying a level of 
performance quickly and reaching an acceptable 
solution based on human-like reasoning mechanisms 
are incentives for combination of fuzzy theory and 
optimization. 
Optimization of fuzzy problems has a significant 
role in many fuzzy systems. In literature, one can 
find several kinds of fuzzy optimization problems 
[1-7], and also different approaches of solution have 
been proposed too. Among these approaches, fuzzy 
genetic algorithm (FGA) [4] and fuzzy tabu search 
(FTS) [8] can be mentioned. These methods can 
produce good approximate solution in solving fuzzy 
optimization. 
Here, we introduce a simulated annealing (SA) 
method; a stochastic global optimization method 
originally developed by Kirkpatrick et al. [9] for 
very large combinatorial optimization problems, and 
extends it to continuous-valued functions for the 
fuzzy optimization problem. We denote this method 
as FSA in the rest of this paper, for notational 
convenience. 

FSA can be used to optimize fuzzy equations and 
linear programming models, which their variables 
and parameters are fuzzy. It also may be used for 
other applications like fuzzy regression and fuzzy 
neural networks. 
The rest of this paper is organized as follows. In next 
section the SA technique is briefly described. In 
section 3, our FSA algorithm is presented. Finally, 
Section 4 concludes the paper. 
Now we introduce some basic notations to be used 
in this paper. We place a bar over a symbol if it 
represents a fuzzy set. So, X represents a fuzzy set. 
All of the fuzzy sets are subsets of real numbers. If 
A is a fuzzy set, then xA denotes the membership 
degree of x  to A . A triangular fuzzy number N is 
defined by three numbers cba << , where 
(1) 0=xN for ax ≤ and cx ≥ , and 1=bN ; and 
(2) the graph of yN x = is a straight line segment 
from )1,(b  to )0,(c on ],[ cb . We write 

),,( cbaN = for triangular fuzzy numbers. We use 
the standard arithmetic of fuzzy sets based on the 
extension principle. 
 
 
2 Simulated annealing: an overview 
Simulated annealing is a computational stochastic 
technique for achieving near global optimum 
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solutions to combinatorial and function optimization 
problems. The idea of the method is borrowed from 
the thermodynamic process of cooling (annealing) of 
molten metals to attain the lowest free energy state 
[9]. When molten metal is cooled slowly enough, it 
tends to solidify in a structure of minimum energy. 
This annealing process is mimicked by a search 
strategy. The key principle of the method is to allow 
occasional worsening moves so that these can 
eventually help locate the neighborhood to the true 
(global) minimum [10]. The associate mechanism is 
given by the Boltzman probability, which is: 
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where E∆  is the change in the energy value from 
one point to the next, BK the Boltzman’s constant 
and T  the temperature (control parameter). For the 
purpose of optimization the energy term, E∆  refers 
to the value of the objective function and the 
temperature,T , is a control parameter that regulates 
the process of annealing. The consideration of such a 
probability distribution leads to the generation of a 
Markov chain of points in the problem domain. The 
acceptance criterion given by Eq. (2.1) is popularly 
referred to as the Metropolis criterion [11]. Another 
variant of this acceptance criterion (for both 
improving and deteriorating moves) has been 
proposed by [12] and can be written as: 
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In simulated annealing search strategy: at the start 
any move is accepted. This allows us to explore 
solution space. Then, gradually the temperature is 
reduced which means that one becomes more and 
more selective in accepting new solution. By the 
end, only the improving moves are accepted in 
practice. The temperature is systematically lowered 
using a problem-dependent schedule characterized 
by a set of decreasing temperatures. In  [13], Prilot 
discussed more about the parameters used in 
simulated annealing algorithms. Due to its simplicity 
and versatility, simulated annealing has the 
distinction of being one of the most widely used 
techniques for both function and combinatorial 
optimization problems. 
So, the SA requires the following basic elements to 
be defined: 
 

• Configuration is a solution or an assignment of 
values to variables. 
• A move is a transition ( ss ′′→′ ) from one trial 
solution ( s′ ) to another ( s ′′ ). 
• Set of candidate moves (neighborhood, or trial 
solutions) is the set of all possible moves out of a 
current configuration. 
• Simulated annealing parameters, such as cooling 
schedule and BK . 

• Termination criteria which determines when the 
SA is terminated. 
 
Given the above basic elements, the SA schemes can 
be described as follows. Start with a certain 
configuration, evaluate the objective function for 
that configuration, then follow a certain candidate 
move. If the move improves the objective function 
then pick that move and consider it to be the new 
current configuration; otherwise, pick the move with 
the probability of Probability )(P to be the new 
current configuration, and drop it with the 
probability of Probability )(P . Repeat the procedure 
until the termination criteria is satisfied. 
On termination, the best solution obtained so far is 
the solution obtained by the SA approach. A recent 
trend in the SA field is the use of different cooling 
schedules [14], which use different functions forT to 
decrease. Because of its simplicity, geometric 
cooling schedule is the most frequently used cooling 
schedule in SA. 
 
 
3 Simulated annealing for fuzzy 

optimization 
We can express a general function F with fuzzy 
input and output as 
 

( )XFY =     (3.1) 
 
Where X is the input and it is a fuzzy subset of some 
interval [ ]M,0 , 0>M . Y is the output from 

F given X . In this section it is assumed that there is 
only one independent in the equation. It can easily 
be generalized to more variables, as is done in [8]. 
Also, any interval for X can be used instead 
of [ ]M,0 . The interval [ ]M,0 is specified just for 
notational convenience. 
The fuzzy optimization problems are more 
complicated than crisp ones. On the other hand, 
optimal solution of an optimization problem can not 
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be obtained by differentiating the objective function 
with respect to the fuzzy variables. So, other 
methods for solving fuzzy optimization problems 
should be introduced. In this paper we propose a SA 
approach for solving fuzzy optimization problems. 
Here we use the same formulation for the problem as 
is used in [8]. We are about to find X in [ ]M,0  to 

maximizeY . However, we can not maximizeY since 
it is a fuzzy set. So, the centroid ofY is used to 
measure the largeness ofY . Now we wish to 
find X in [ ]M,0  to maximize the centroid ω  
 

( )Ycentroid=ω    (3.2) 
 
ω is the objective function in the FSA. Next, the 
same discretization work for the fuzzy set X is done. 
Supposing N a positive integer, we choose 

 
,NMizi ×=   Ni ≤≤0  (3.3) 

 
Thus we discretize [ ]M,0  into 1+N  points iz , 
with 00 =z and MzN = . We will now use a 

vector X , comprised by the 1+N  points, to 
represent fuzzy variable as shown below: 
 

( )NxxxX ,...,, 10=    (3.4) 
 
Where 
 

( )ii zXx =     (3.5) 
 
We input the discrete version of X to F and 
obtainω of ( )NxxxF ,...,, 10 . So, F maps 

[ ] 11,0 +N into the real numbers. Now we are about to 

find a vector X in [ ] 11,0 +N to maximizeω . FSA will 
be designed to find this vector. 
Before describing the FSA, some important issues 
should be addressed. 
In our notation CurrX and Currω denote current 
solution and current objective value, respectively. 
Similarly, TrialX , BestX and Trialω , Bestω represent 
trial solution, best solution, trial objective value and 
best objective value, respectively. One of the 
problems FSA faces is generating a trial solution, 
given a current solution CurrX . Here, we use a 
neighborhood structure as described in [15]. The 

solution space [ ] 11,0 += NS is partitioned into 
disjunct cells by division of the coordinate interval 
along the Nxxx ,...,, 10  axes into Nppp ,...,, 10 parts. 
The problem specific partition parameter 

( )NpppP ,...,, 10=  determines a unique partition 
of S into cells. Thus specifies the address of each 
cell. Thus the address of a cell can be expressed as 
the following array A . 
 

0n  1n  2n  … Nn  

 
Where ii pn ≤≤1 , Ni ≤≤1 denotes the in th 
interval of the i th axis. We use the following 
strategy to choose cell at each iteration: given CurrX , 
which belongs to cell cA , and a probability 
threshold P , for Ni ,...2,1,0= , draw a random 
number r ~ ( )1,0u , if Pr < , then )()( iAiA ct = ; 
otherwise, draw randomly an integer l from the 
following set{ })(,,...,2,1: iAlpll ci ≠= , and 
let liAt =)( , where cA and tA are the address of the 
current and trial solutions. 
The probability threshold ( P ) controls the shake-up 
that is performed on a certain solution to choose a 
neighbor. The higher the value of P , the less shake-
up is allowed and consequently the closer the 
neighbor to the current solution and vice versa. 
We choose geometric cooling schedule for our FSA 
with the coefficient of 0.9. As the termination 
criteria, we choose number of iterations and select 
1000 iterations as the termination criteria. 
Now, we present our FSA algorithm: 
 
1. Initialization: Let CurrX be an arbitrary initial 

solution generated randomly form [ ] 11,0 +N  and 

Currω be the corresponding objective function 

value. Let CurrBest XX = and CurrBest ωω = . 
Select values for the following parameters: P 
(probability threshold), cooling schedule and 
termination criteria. Go to step 2. 

2. Using CurrX , generate the neighbor of CurrX , 
TrialX , and evaluate its objective function value, 

Trialω . Go to step 3. 
3. Do 

If BestTrial ωω > , set TrialCurr XX = , 

CurrBest XX = , and CurrBest ωω = . Otherwise, 
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with the probability of ( )TE∆−exp , set 

TrialCurr XX = , CurrBest XX = , and 

CurrBest ωω = . Update the temperature (T ) in 
accordance with the cooling schedule. 

Until the termination criteria is satisfied. 
 
The above algorithm is designed for solving fuzzy 
optimization problems when the problem includes 
fuzzy variables which are fuzzy subsets of [ ]M,0 . 
As described above, this algorithm can easily be 
modified to solve optimization problems including 
fuzzy variables which are fuzzy subsets of any other 
interval.  
 
 
4   Conclusion 
In this paper a simulated annealing method for 
approximately solving fuzzy optimization problems 
is introduced. We named this algorithm FSA. This 
algorithm can be used to optimize a general 
equation. Also, FSA can be used for optimizing 
fuzzy linear programming models, which their 
variables and parameters are fuzzy. It also may be 
used for other applications like fuzzy regression in 
which a fuzzy error function should be minimized. 
Fuzzy neural networks, also, can use this algorithm. 
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