
A Note on the Complexity of Rooted Trees and Hierarchies
with Possible Applications to Organization Design and

System Architectures

Peter P. Chen
Department of Computer Science

Louisiana State University
Baton Rouge, Louisiana, 70803

USA
p

http://www.csc.lsu.edu/~chen

Guoli Ding
Department of Mathematics
Louisiana State University

Baton Rouge, Louisiana, 70803
USA

http://www.math.lsu.edu/~ding

Abstract: We define a complexity function over all rooted trees (i.e., Tree Hierarchies). The
purpose of this note is to minimize this function, over all rooted trees on a fixed number of
vertices. The results may be useful in the study of organization design and system architectures.

Key-Words: tree complexity, hierarchy complexity, rooted tree, k-ary tree, complete k-ary tree,
near-complete k-ary tree, organization design, and system architecture.

1. Introduction
The purpose of this note is to introduce and
study a new concept, the complexity of a
hierarchy.

Many real world structures can be modeled by
hierarchies. These examples range from
business and/or government organizations to
various databases. What we are interested in is
how to measure the efficiency of such
structures.

In this note, we will limit ourselves to tree
hierarchies. That is, we only consider
hierarchies that can be represented by rooted
tress. This restriction does not lose too much
generality since tree hierarchies do represent a
big percentage of hierarchies used in real
world. On the other hand, this restriction does
allow us to present a closed form solution.

Before we formally define the complexity of a
rooted tree (a tree hierarchy), we point out
that there are two factors that increase the
complexity. If the tree has a vertex very far
away from the root, then the complexity
should be high. This is understandable since
passing information from the root to this
vertex will take a long time, which means the
hierarchy is not very efficient. Similarly, if a

vertex has too many immediate descendants,
communicating with these descendants would
easily overwhelm this vertex, which also
reduces the efficiency of the hierarchy.

In the next section, we introduce a definition
of the complexity of a rooted tree that takes
both factors into consideration. Our main
result, Theorem 1, says that “near-complete k-
ary trees” (will be defined in the next section)
are the most efficient rooted trees. Moreover,
our proof implies that every rooted tree can be
transformed into an efficient tree by
repeatedly applying some local minor
modifications.

2. Problem Formulation
Let T be a rooted tree with root r. A vertex v
of T is at level ℓ if the unique path from r to v
has ℓ edges. The height of T, denoted by h(T),
is the largest ℓ so that T has a vertex at level ℓ.
If X ⊆ V(T) contains r and the restriction of T
to X is connected, then we call this restriction
a root subtree of T, where r is also the root of
this subtree.

For each vertex v of T, we denote by c(v) the
number of children of v. Let k ≥ 2 be a fixed
positive integer. We call T a k-ary tree if
c(v)≤ k, for all vertices v of T. A k-ary tree of

Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp150-152)

height h is complete if c(v)=k, for every
vertex at a level less than h, and c(v)=0, for
every vertex v at level h. We denote this tree
by Tk,h. A k-ary tree of height h is near-
complete if it is obtained from Tk,h by deleting
some, could be zero, but not all, vertices at
level h.

Let pk (x)=x-k, when x≥ k and let pk(x)=0
when x≤ k.

Let f(T)=h(T)+∑v∈V(T) pk(c(v)),
which we call the complexity function of T.

Observation 1.
If T is a near-complete k-ary tree on n vertices,
then it is straightforward to verify that

h(T)= ⎡log k (1+n(k-1))⎤ -1.

Theorem 1.
If T is a rooted tree on n vertices, then
f(T)≥ ⎡log k (1+n(k-1))⎤ -1.

To prove this theorem, we first prove a lemma.
Let T be a rooted tree. For i=0,1, let Li(T) be
the set of vertices v with c(v)=i.

Lemma 1.
2|L0(T)|+|L1(T)| > |V(T)|.

Proof.
Let L2(T)=V(T)-L0(T)-L1(T). Since every non-
root vertex is a child of a unique vertex,

|V(T)|-1=∑ v∈V(T) c(v).
Consequently,
|L0 (T)|+|L1 (T)|+|L2 (T)| > 2|L2 (T)|+|L1 (T)|,
which can be simplified as |L0 (T)| > |L2 (T)|,
and thus the Lemma follows. ■

Let T be a rooted tree. For each vertex v of T,
it is clear that deleting v from T results in
exactly c(v) components that contain
descendants of v. These components are
called branches at v. We also define

g(T)=∑{c(v): v∈ V(T) and c(v)>k}.

Proof of Theorem 1.
We choose a rooted tree T with the following
properties:

(1) f(T) is minimized;
(2) subject to (1), g(T) is minimized;

(3) subject to both (1) and (2), the
largest rooted subtree T' of T,
such that T' is a near-complete k-
ary tree, is maximized.

Clearly, by Observation 1, we need only
prove that T is a near-complete k-ary tree,
which is equivalent to T=T'.

We first prove that T is a k-ary tree. Suppose,
on the contrary, that T has a vertex v for
which c(v)=c>k. Let T1,T2,...,Tc be the
branches at v. Without loss of generality, we
may assume that |V(T1)|≤ |V(Ti)|, for all i. Let
S be the rooted tree, with v as its root, that
consists of T2,T3,...,Tc and v. By Lemma 1, and
the choice of T1, we have
2|L0 (S)|+|L1 (S)| > |V(S)| > |V(T1)|.

Now we modify T as follows. First, we delete
all edges that are incident with some vertex in
V(T1). Then we add a new edge from each
vertex in V(T1) to a vertex in L0(S)∪L1 (S)
such that each vertex in L0 (S) is incident with
at most two of these new edges and each
vertex in L1 (S) is incident with at most one of
these new edges. From the above inequality
we know that this is possible.

Let T* be this new tree. Then h(T*)≤ h(T)+1
and v has exactly one child less in T* than it
has in T. Moreover, for every other vertex u,
either c(u) does not change or u has at most
two, with is less than or equal to k, children in
T*. Therefore, f(T)≥ f(T*) and g(T)>g(T*),
contradicting either (1) or (2). This
contradiction proves that T is a k-ary tree.

It remains to prove that T'=T. Since T' is a
near-complete k-ary tree and it is a rooted
subtree of the k-ary tree T, it follows that
every vertex of T at level ℓ≤ h(T') belongs to
T′.

Suppose, on the contrary, that T' ≠ T. Then T
must have a vertex u at level h(T')+1. By the
maximality of T′, adding u to T′ does not
result in a near-complete k-ary tree. This
means that T′ is not a complete k-ary tree,
which implies that some vertex v of T at level
h (T′)-1 has fewer than k children. Now we

Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp150-152)

modify T as follows. Take a vertex w at level
ℓ>h(T′) with c(w)=0. Delete the only edge
incident with w and add a new edge vw. Let R
be this new rooted tree. It is clear that f(T)≥
f(R) and g(T)=g(R). However, if we take R ′
to be the rooted subtree of R that consists of
T′and w, then R′ is a near-complete k-ary
tree, which is bigger than T＇, contradicting
(3). This contradiction proves that T=T＇,
which completes the proof of Theorem 1. ■

3. Possible Applications and
Extensions

The definition of “complexity” in this paper is
somewhat different than definitions of
complexity by other researchers [1-5]. We
think our definition will be useful in the study
of optimal organization structure and also the
costs of migrating from one organization
structure to another.

Another possible extension and application is
to develop mathematical framework including
a set of algebraic operations, which will be
useful in studying different alternatives of
systems architectures [6-11]

Acknowledgment. This research was partially
supported by U.S. NSF grant DMS-9970329,
NSF Grant IIS- 0326387, and U.S. AFOSR
Grant No. F49620-03-1-0239, F49620-03-1-
0238, F49620-03-1-0241, F49620-01-1-0264,
and FA9550-05-1-0454.

References:
[1] Codynamics, "Introduction to the

Basic Concepts of Complexity
Science," in
http://www.codynamics.net/intro.htm,
2004.

[2] J. Collier, "Organized Complexity:
Properties, Models, and Limits of
Understanding," in
http://www.nu.ac.za/undphil/collier/p
apers/cuba-complexity.pdf, 2004.

[3] E. E. Olson, Glenda H. Eoyang,
"Facilitating Organization Change:
Lessons from Complexity Science,"

First ed: Jossey-Bass/Pfeiffer,
February 7, 2001.

[4] M. Lissack, "Michael Lissack's
Publications," in
http://lissack.com/writings/, 2004.

[5] T. Petzinger, "Complexity Reading
List," in
http://www.petzinger.com/complexity.
shtml, 2004.

[6] P. Chen, and Guoli Ding,
"Unavoidable double-connected large
graphs," Discrete Mathematics, 2004.

[7] P. Chen, "A Preliminary Framework
for Analyziing Critical Issues in
Engineering Systems," presented at
MIT Symposium on Engineering
Systems,
http://esd.mit.edu/symposium/pdfs/pa
pers/chen-abst.pdf, Cambridge, MA,
2004.

[8] J. Moses, "Three Design
Methodologies, Their Associated
Organizational Structures and Their
Relationships to Various Fields,"
presented at MIT Symposium on
Engineering Systems,
http://esd.mit.edu/symposium/pdfs/pa
pers/moses.pdf, Cambride, MA, 2004.

[9] P. Chen, "The entity-relationship
model: Toward a unified view of
data," ACM Transactions on
Database Systems, vol. 1, 1976.

[10] P. Chen, and Guoli Ding, "Generating
r-regular graphs," Discrete Applied
Mathematics, vol. 129, pp. 329-343,
2003.

[11] P. Chen, and Guoli Ding, "The Best
Expert Versus the Smartest
Algorithm," Theoretical Computer
Science, Vol. 332, No. 1-3, (2005),
pp. 63-81.

Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp150-152)

