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Abstract: We define a complexity function over all rooted trees (i.e., Tree Hierarchies). The 
purpose of this note is to minimize this function, over all rooted trees on a fixed number of 
vertices. The results may be useful in the study of organization design and system architectures. 
 
Key-Words: tree complexity, hierarchy complexity, rooted tree, k-ary tree, complete k-ary tree, 
near-complete k-ary tree, organization design, and system architecture. 
 
1. Introduction 
The purpose of this note is to introduce and 
study a new concept, the complexity of a 
hierarchy.  
 
Many real world structures can be modeled by 
hierarchies. These examples range from 
business and/or government organizations to 
various databases. What we are interested in is 
how to measure the efficiency of such 
structures.  
 
In this note, we will limit ourselves to tree 
hierarchies. That is, we only consider 
hierarchies that can be represented by rooted 
tress. This restriction does not lose too much 
generality since tree hierarchies do represent a 
big percentage of hierarchies used in real 
world. On the other hand, this restriction does 
allow us to present a closed form solution.  
 
Before we formally define the complexity of a 
rooted tree (a tree hierarchy), we point out 
that there are two factors that increase the 
complexity. If the tree has a vertex very far 
away from the root, then the complexity 
should be high. This is understandable since 
passing information from the root to this 
vertex will take a long time, which means the 
hierarchy is not very efficient. Similarly, if a 

vertex has too many immediate descendants, 
communicating with these descendants would 
easily overwhelm this vertex, which also 
reduces the efficiency of the hierarchy. 
 
In the next section, we introduce a definition 
of the complexity of a rooted tree that takes 
both factors into consideration. Our main 
result, Theorem 1, says that “near-complete k-
ary trees” (will be defined in the next section) 
are the most efficient rooted trees. Moreover, 
our proof implies that every rooted tree can be 
transformed into an efficient tree by 
repeatedly applying some local minor 
modifications.  
 
2. Problem Formulation 
Let T be a rooted tree with root r. A vertex v 
of T is at level ℓ if the unique path from r to v 
has ℓ edges. The height of T, denoted by h(T), 
is the largest ℓ so that T has a vertex at level ℓ. 
If X ⊆ V(T) contains r and the restriction of T 
to X is connected, then we call this restriction 
a  root subtree of T, where r is also the root of 
this subtree.  
 
For each vertex v of T, we denote by c(v) the 
number of children of v. Let k ≥ 2 be a fixed 
positive integer. We call T a  k-ary tree if 
c(v)≤ k, for all vertices v of T. A k-ary tree of 
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height h is complete if c(v)=k, for every 
vertex at a level less than h, and c(v)=0, for 
every vertex v at level h. We denote this tree 
by Tk,h. A k-ary tree of height h is near-
complete if it is obtained from Tk,h by deleting 
some, could be zero, but not all, vertices at 
level h.  
 
Let pk (x)=x-k, when x≥ k and let pk(x)=0 
when x≤ k.  
 
Let  f(T)=h(T)+∑v∈V(T )  pk(c(v)), 
which we call the  complexity function of T. 
 
Observation 1.  
If T is a near-complete k-ary tree on n vertices, 
then it is straightforward to verify that  

h(T)= ⎡log k (1+n(k-1))⎤ -1. 
 
Theorem 1.   
If T is a rooted tree on n vertices, then      
f(T)≥ ⎡log k (1+n(k-1))⎤ -1. 
 
To prove this theorem, we first prove a lemma. 
Let T be a rooted tree. For i=0,1, let Li(T) be 
the set of vertices v with c(v)=i. 
 
Lemma 1.  
2|L0(T)|+|L1(T)| > |V(T)|. 
 
Proof.  
Let L2(T)=V(T)-L0(T)-L1(T). Since every non-
root vertex is a child of a unique vertex,    

|V(T)|-1=∑ v∈V(T )  c(v). 
Consequently, 
|L0 (T)|+|L1 (T)|+|L2 (T)| > 2|L2 (T)|+|L1 (T)|, 
which can be simplified as |L0 (T)| > |L2 (T)|, 
and thus the Lemma follows. ■ 
 
Let T be a rooted tree. For each vertex v of T, 
it is clear that deleting v from T results in 
exactly c(v) components that contain 
descendants of v. These components are 
called branches at v. We also define 

g(T)=∑{c(v): v∈ V(T) and  c(v)>k}. 
 
Proof of Theorem 1.  
We choose a rooted tree T with the following 
properties: 

(1) f(T) is minimized;  
(2) subject to (1), g(T) is minimized; 

(3) subject to both (1) and (2), the 
largest rooted subtree T' of T, 
such that T' is a near-complete k-
ary tree, is maximized. 

 
Clearly, by Observation 1, we need only 
prove that T is a near-complete k-ary tree, 
which is equivalent to T=T'. 
 
We first prove that T is a k-ary tree. Suppose, 
on the contrary, that T has a vertex v for 
which c(v)=c>k. Let T1,T2,...,Tc be the 
branches at v. Without loss of generality, we 
may assume that |V(T1)|≤ |V(Ti)|, for all i. Let 
S be the rooted tree, with v as its root, that 
consists of T2,T3,...,Tc and v. By Lemma 1, and 
the choice of T1, we have 
2|L0 (S)|+|L1 (S)| > |V(S)| > |V(T1)|. 
 
Now we modify T as follows. First, we delete 
all edges that are incident with some vertex in 
V(T1). Then we add a new edge from each 
vertex in V(T1) to a vertex in L0(S)∪L1 (S) 
such that each vertex in L0 (S) is incident with 
at most two of these new edges and each 
vertex in L1 (S) is incident with at most one of 
these new edges. From the above inequality 
we know that this is possible. 
 
Let T* be this new tree. Then h(T*)≤ h(T)+1 
and v has exactly one child less in T* than it 
has in T. Moreover, for every other vertex u, 
either c(u) does not change or u has at most 
two, with is less than or equal to k, children in 
T*. Therefore, f(T)≥ f(T*) and g(T)>g(T*), 
contradicting either (1) or (2). This 
contradiction proves that T is a k-ary tree. 
 
It remains to prove that T'=T. Since T' is a 
near-complete k-ary tree and it is a rooted 
subtree of the k-ary tree T, it follows that 
every vertex of T at level ℓ≤ h(T') belongs to 
T′. 
 
Suppose, on the contrary, that T' ≠ T. Then T 
must have a vertex u at level h(T')+1. By the 
maximality of  T′, adding u to T′ does not 
result in a near-complete k-ary tree. This 
means that T′ is not a complete k-ary tree, 
which implies that some vertex v of T at level 
h (T′)-1 has fewer than k children. Now we 
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modify T as follows. Take a vertex w at level 
ℓ>h(T′) with c(w)=0. Delete the only edge 
incident with w and add a new edge vw. Let R 
be this new rooted tree. It is clear that f(T)≥ 
f(R) and g(T)=g(R). However, if we take R ′ 
to be the rooted subtree of R that consists of 
T′and w, then R′ is a near-complete k-ary 
tree, which is bigger than T＇, contradicting 
(3). This contradiction proves that T=T＇, 
which completes the proof of Theorem 1. ■ 
 
 
3. Possible Applications and 
Extensions 
 
The definition of “complexity” in this paper is 
somewhat different than definitions of 
complexity by other researchers [1-5].  We 
think our definition will be useful in the study 
of optimal organization structure and also the 
costs of migrating from one organization 
structure to another. 
 
Another possible extension and application is 
to develop mathematical framework including 
a set of algebraic operations, which will be 
useful in studying different alternatives of 
systems architectures [6-11] 
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