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Abstract: - This article is an attempt to investigate stationary queuing systems with variable servers’ number. 
Servers’ quantity here is determined with stochastic variable. Some formulae are received for stationary state 
probabilities, carried load, queue mean and variance for conditional busy and free (without and with idle 
servers respectively) M/M/v system. The results are compared with well known ones for M/M/s systems using 
deterministic probability as server distribution. 
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1   Introduction 
 
Modern distributed systems middleware offers 
resource hiring from others cites which may belong to 
other organizations. For example, this is a good 
practice in GRID solutions [1], where one can build 
virtual organization using borrowed resources. Well 
known similar business technology is outsourcing. 
Computational resources in such environments can be 
offered or revoked at arbitrary time what makes these 
systems mutable. At another point of view, sometimes 
system designer is forced to apply dynamical hiring 
policy of some kind as a result of nonzero cost of 
borrowed resources in general case.  
Another approach may be useful to systems if its 
service or reaction time is a question of importance. 
They use idle (awaiting job) servers, increasing in 
number with increasing incoming customers rate, 
forming conditional free systems with variable 
servers’ quantity. 
Systems with variable servers’ number are also 
interesting in the cases when servers’ quantity in a 
system is random at its nature. These and other 
reasons are supporting appearance of systems with 
variable servers’ number and make interest of its 
investigation. 
In the article systems with variable servers’ number 
are named as M/M/v, where ‘v’ means ‘variable’ what 
denotes variable servers’ quantity. Poisson was 
chosen as income and servicing processes due to its 
simplicity and a vast volume of existing 
investigations. 
 
1.1 Related works. 
 
Author hasn’t found at his best knowledge queue 
theory any work with explicit */*/v systems’ analysis. 
Investigations of the systems with variable parameters 

look like the most close to this area: Cox processes, 
compound and phase process, mixed processes e. t. c. 
Analysis systems with variable servers’ number are 
performed in many scientific fields. For example, the 
Chord [2], Tapestry [3] systems allow nodes join and 
leave system at random, perform node location and 
recovering. In application areas mutable systems were 
wide investigated ([4,5] for example), but its own 
specific questions were put and answered (content 
preservation, vulnerability e. t. c.) leaving queuing 
questions aside. Another example: compound Poisson 
process modeling radiation damage in [4], fault 
tolerant systems [1-3] congestion in network [5] and 
so on. 
Used in the paper division the system into 
conditionals is similar to technique found in [6], 
where variable waiting room in queues was 
investigated. 
 
 
2   Problem Formulation 
 
The system is assumed to be within time stationary 
condition. We’ll investigate two subsets of its states: 
conditional busy if there is no idle server, and 
conditional free if there is at least one idle server. 
From arriving customer’s view a system is conditional 
busy if it is to be placed in its queue and conditional 
free if it is to be placed to servers’ pool after arrival. If 
a customer has seized the last idle server then the 
system is not longer conditional free because next 
arriving customer will go to the queue. And vice 
versa: if in a conditional busy system with empty 
queue a customer was serviced then the system is not 
longer conditional busy because next arriving 
customer will go to a server pool. 
In the paper independent identical distributed Poisson 
services iX  with mean service rate µ  were used. 
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Poisson input has rate λ  and µλ /=a . Servers’ 
quantity is provided with random variable U  with 
known probability distribution }{ ku  and mean τ . 
Incoming customer in a conditional busy system is 
placed in a queue and waits as long as necessary for 
later servicing. So in the conditional busy system its 
queue is the object of investigations. 
Incoming customer in a conditional free system is to 
be placed in the server pool and system is expected to 
be still free. It is happens if there is at least one free 
server after customer’s departure or it is rejected 
otherwise if one wants stay in this model. So in the 
conditional busy system its server’s pool is the object 
of investigations 
The main task of the article is to obtain M/M/v 
models’ parameters (state probability distributions, 
queue mean and variance e. t. c.) and show that they 
correspond to known ones in suitable conditions. It is 
done using deterministic probability distributions. 
Finally some discussion and generalizations were 
made. 
 
 
3   Problem Solution 
 
3.1 M/M/v loss system  
 
Model of conditional free (as defined in section 2) 
M/M/s+1 system is general M/M/s Erlang loss system.  
State probabilities for stationary states of a M/M/v 
system are achieved using corresponding stationary 
states of M/M/s Erlang loss systems within which the 
system stays in given relative duration time 
(probability). We assume that server number changing 
is as slow as necessary to keep stationary state. 
If server without customer leaves system or new idle 
server enters a system then nothing happens with 
servicing in the system. If server with customer leaves 
a system and there is an idle server then one may 
think that the servers were swapped: idle servers 
leaves and that to be leaved stays in the system, or one 
may think that the customer was passed to idle server 
without harm to servicing process. It may be done 
because servers are assumed to be indistinguishable. If 
server with a customer leaves a system and there is no 
idle server then the customer leaves the system also. 
 
Proposition 1. Customers and servers numbers form 
full and disjoint set of parameters qualifying the 
system: 1) every system state is characterized with 
pair of customer and server numbers and 2) there are 
no identical (not distinguished) or overlapping system 
states with different parameters. This proposition is 
natural to queuing models and it seems that it doesn’t 
require any additional comments. 

Let Q  is number of customers in the system, U  is 
servers’ number, and sP  is a norm multiplier. Then 
from M/M/s Erlang loss system model one gets: 
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Norm equation follows from assumption that union of 
all possible system states with fixed server’s and 
arbitrary customers’ numbers have to produce macro 
state with given server’s number. Proposition 1 tells 
that used parameters set is full then if one evaluates 
arbitrary chosen server’s number probability from 
system’s state probabilities aggregating customers, 
then the result is to be exactly the same server’s 
probability }{ ku  as given in section 2. We use direct 
probability addition in the servers’ probability 
calculation because due to proposition 1 these 
parameters are disjoined set against their index. So 
norm equation and norm multiplier are: 
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Then state probabilities are: 
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Note, that here we accept zero server quantity state 
probability despite of the fact that in this state all 
incoming customers are to be rejected and lost. This is 
a valid stationary state of turned off customer 
servicing machine. 
Probability generation function is found as: 
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Let’s see at 
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Here ),( asB  is Erlang loss formula. We obtain a 
differential equation for ),( yxG . Solution of 
equation (3) produces equation (2) back again and so 
has no worth. 
Note: in (3) the serial contains as parameter only 
product of arguments. The mean of the fact is still not 
understood by author. 
 
Mean customer number in the system (carried load) is 
got with substitution ones as arguments in (3) and it 
may be made once again for variance calculation: 
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Result for the mean may be seen as system’s load in 
its every M/M/s slice state is proportional to its 
probability (relative duration) or system’s loss id 
evaluated as weighted loss sum of corresponding 
systems. 
 
Probability of incoming customers entered (not 
rejected) into the M/M/s system is ( )),(1 asBs −=υ . 
Because of independence server numbering and 
incoming Poisson processes we can gather customers 
entered in all time slices within its relative durations 

su  and evaluate entering customers with unity 
incoming rate for the whole system (and use (4)): 
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If we write )(QEL = , λτ=a  ( 1−= µτ  is mean 
service time), λυ=Λ  (real customer rate entering 
the system) and notice that in a conditional free 
system there is no waiting time in queue so τ=W , 
then we have proved validity Little’s theorem for 
conditional free M/M/v system: 
 

WaQEL Λ=== υ)(   
 
3.2 Conditional busy delay M/M/v system 
with unbounded queue. 
 
Let’s again Q  is number of customers in the system, 
queue length is L , and U  is servers’ number. Here a 
customer is to be placed into queue. In case of M/M/v 
system U  is not a constant, so there is in not simple 
relation between Q  and L  like ULQ += . This 
model differs from just discussed in servicing 
customers. A customer which was been in service 
with lost server is considered as suspended placed 
back in a queue and its service resumed in a due time. 
Because of Poisson type of service, loosing serving 
node incident doesn’t hesitate analyze. 
System’s probabilities are made like (1) and they are 
also constitute full and disjoined parameterized set. 
In busy M/M/v system we have Erlang delay system 
probability distribution for every state with fixed 
servers’ number and exceeding it customers’ number: 
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Now in delay systems we will assume that zero server 
state has null probability ( 00 =u ) so it avoids null 
division in (5) and derived formulae. When 00 =u  
there no idle server so formally this state may be 
considered within this framework, but calculations in 
‘parent’ Erlang delay model requires server, so 
technically zero server model cannot be achieved this 
way. Infinity may appear in (5) with zero server state 
because of servers lack to service incoming 
customers. Hence with nonzero incoming rate the 
system accumulates infinite number of customer along 
its way to stationary state. From another point of view 
this state is also of no mean: how can system be busy 
if it has no server? What is busy there? We see that 
work with this state brings some troubles which are 
better to avoid throwing out this state (requiring zero 
probability of its existence). We exclude such case in 
later calculations assuming zero probability of its 
existence. 
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So norm multipliers are: 
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And state probabilities are 
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If we want to find “queue length” / “server number” 
parameterized state probabilities, then: 
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Here ][UM J−  is J -th negative moment of servers’ 
probability distribution. 
 
Note: For example if 1>a  and 01 >u  then 

∞=−

∞→
])[(lim UMa JJ

J
. So convergence problem of 

serials in (7) is appeared and discussed later in section 
3.1.2. 
 
So (7) can be rewritten to: 
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Let’s check the norm of probability distribution (7–8): 
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The queue’s mean length calculation results in: 
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This result also is intuitively follows from the 
assumption that M/M/v conditional busy system’s 

queue length is equal 
sa

sa
/1

/
−

 in every s-server’ state 

(M/M/s conditional busy system), gathered with 
account of their probabilities su : 
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To calculate variance one has to deal with the serial: 
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So queue’s length variance is equal: 
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Here )(LE  is the queue’s length mean (9). 
 
3.1.1 Little’s theorem for conditional busy M/M/v 
system. 
 
This theorem is not valid in conditional busy state in 
its direct meaning but if we write serials with servers’ 
number slice probabilities for general Erlang delay 
systems with possible idleness (here C(s,a) is Erlang 
delay formula) then it was correct for M/M/v systems. 
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Mean waiting time in the “servicing place” of busy 
systems equal 1−= µτ . The rest waiting will be in a 
queue. 
For FIFO servicing discipline the mean in queue 
waiting for conditional busy M/M/v system )( c

Q
WE  

is evaluated gathering sliced waiting times for M/M/s 
systems with its probabilities: 
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Mean servicing time in a conditional busy s-server 
pool is τ=)( c

sWE . In a no conditional busy system 
case we must multiply these results with C(s,a) for 
every slice to break conditions and with servers’ 
probability also: 
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There is seen that )()( WEQE λ= . 
 

WL λ≠  in a conditional busy system. But it is 
worked if we consider as the system only queue alone 
without accounting for servers pool as it was 
suggested for investigation subject in chapter 2. 

Queue mean from (9) is ∑
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3.1.2 Convergence of serials with negative 
moments. 
 
In case 1=a  we have to investigate convergence of 
negative moments sequence ]}[{ UM J− . Obviously, 
every moment exists.  
 
Theorem 1. Sequence ]}[{ UM J−  has a limit and it is 
equal 10 uu + : 
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So with given 0>ε  we put ε2log−=n , after 
which all higher negative moments will be in ε  area 
of 1u . Proved. 
 
Note: If we want to receive serial with these moments, 
we have to claim 01 =u . 
 
The case 1<a  is obvious: 0])[(lim =−
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In case 1>a , let ⎡ ⎤ 1>= ab  is the least integer 
above a. Then we divide moment’s serial to two parts 
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Their limits at large numbers are: 
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Hence to have convergence for serials in (7) we have 
to claim (it is equal stability requirement sµλ /1 >  
for all appeared there M/M/s systems): 
 

0)},1[{ =∈ aUP . (11)
 
3.4 Comparison with existing results. 
 

Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp49-54)



The M/M/s system can be achieved from M/M/v 
system’s model using deterministic probability 
distribution sp : 
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Queue length mean (9) and variance (10) with 
probability distribution (12) for conditional busy 
systems are calculated as follows and coincide with 
corresponding conditional busy system M/M/s values: 
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For a conditional free M/M/v system the queue length 
mean coincides to corresponding Erlang loss system 
with deterministic servers’ probability distribution as 
told after equation (4). 
If we look at (4) we see equation for evaluating 
carried load L coinciding with well known results for 
M/M/s system with deterministic probability (12). 
The same actions with deterministic probability can 
be done to customize the Little’s theorem. 
 
Author has checked probability distributions of loss 
and busy M/M/v system models with GPSS 
simulation software. Tests were quite obvious and 
received results support offered equations. Simulation 
results are not included here due to article’s space 
limitation and its simplicity. 
 
 
4   Conclusion. 
 
Perhaps it may be more convenient in some cases to 
place more information (such as distribution type) in 
queue’s server’s number classification place instead of 
simple letter ‘v’. For example, M/M/M queue has 
Poisson server’s distribution with Poisson servicing. 
Comparison with M/M/s systems gives the heuristic 
that M/M/v system may be considered as 
generalization of some kind of known M/M/s systems. 
It seems that this fact has its own science significance. 
In this paper server number was controlled with a 
random process. One can use functional control 
instead and investigate system’s behavior in a 
framework of control, decision or another theory. 

Stationary probability equations were used in 
calculations. To be this action correct, either server 
changing is to occur as rare as enough for the system 
to come back into stationary states and weight of 
intermediate states is too small to take it into account, 
or we have to treat these results as an approximation. 
Equation (11) seems to be very strong restriction. 
Another approach is needed to correct description of 
these cases. GPSS simulations gave stable 
distributions in some cases when load belongs to 
‘forbidden area’. ‘Stable’ means that a system comes 
into some fixed probability distribution with varying 
involved customers number and initial state of the 
system. So claim of (11) is better to treat as 
application boundary of used methods. 
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