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Abstract: - Linear stability theory is applied to the Marangoni convection in a horizontal  layer of an incompr-
essible viscous fluid heated from below in the presence of a uniform vertical magnetic field when the fluid is 
bounded above by a deformable free surface and below by a solid plate. A non-linear relationship between the  
magnetic field and the magnetic induction suggested by Roberts [13] is applied.  

The non-linear relationship has no effect on the development of instabilities through the mechanism 
of stationary convection but influences the onset of overstable convection and new results were produced 
depending on this non-linear relation. The numerical results were obtained using the method of expansion of 
Chebyshev polynomials. 
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1  Introduction  
Linear instability theory has attracted considerable 
interest and has been recognized as a problem of 
fundamental importance in many areas of fluid dyn-
amics. The phenomena observed by Benard [1,2] 
when a horizontal layer of incompressible viscous 
fluid heated from below and contained by two paral-
lel plates have been explained by Rayleigh [3] who 
considered instability due to the action of buoyancy 
forces. Rayleigh provided a theoretical explanation 
for Benard’s experimental results, and showed that 
the numerical value of the non-dimensional parame-
ter R, now commonly called the Rayleigh number, 
decides whether a layer of fluid is stable or not. 
Later workers including Jeffreys [4,5], Low [6] and 
Pellow & Southwell [7] have extended and refined 
Rayleigh’s analysis. Thermal instability theory has 
been enlarged by the interest in hydrodynamic flows 
of an electrically conducting fluids in the presence of 
a magnetic field. Thompson [8], Chandrasekhar 
[9,10], Nakagawa [11,12] and others have examined 
Benard problem in the presence of a magnetic field 
when the relation between the magnetic field Hi and 
the magnetic induction Bi is linear. 

Roberts [13] and Muzikar & Pethick [14] have 
used a non-linear relation between Bi and Hi to 
model convection in a neutron star. This non-linear 
relation have been used by Abdullah & Lindsay 
[15,16] to discuss the Benard convection in the pres-

ence of a vertical and non-vertical magnetic field, 
and they showed that this non-linear relationship has 
no effect on the development of instabilities through 
the mechanism of stationary convection but influen-
ces the onset of overstable convection. Abdullah 
[17,18] used this non-linear relationship to discuss 
the magnetic Benard problem in the presence of 
Coriolis forces for a vertical and non-vertical 
magnetic field respectively. Jan & Abdullah [19] and 
Abdullah [20] discussed the Benard convection in 
the presence of porous medium for a linear and non-
linear magnetic fluid respectively. Thermosolutal 
convection in a linear and non-linear magnetic fluid 
have been discussed by Al-Aidrous & Abdullah [21] 
and Abdullah [22] respectively.  

The earliest work on thermocapillary instability 
of a fluid layer heated from below with a non-
deformable free surface was performed by Pearson 
[23]. Pearson discussed Benard’s experimental resu-
lts and showed that instability arises due to surface 
tension rather than buoyancy, and that the non-
dimensional parameter M, now commonly called the 
Marangoni number, must attain a certain minimum 
critical value for instability to occur. Surface tension 
driven instability in a horizontal liquid layer with a 
deformable free surface was examined by Scriven & 
Sternling [24], Smith [25] and Takashima [26].  

All the previous work of thermocapillary instab-
ility were limited to the case of stationary convection 
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and the first author to investigate the possibility of 
an instability setting in as overstability was Takash-
ima [27]. He demonstrated that such an instability 
was only possible when the free surface was deform-
able and even then only for certain negative Marang-
oni numbers, corresponding to the situation in which 
the temperature of the solid wall below is lower than 
that of the undisturbed free surface above.  

The effect of a uniform vertical magnetic field 
on the surface tension and buoyancy convection with 
a deformable free surface was demonstrated by 
Sarma [28]. The joint effects of magnetic field and 
rotation was investigated by Sarma [29] on onset of 
stationary instability when the free surface is defor-
mable. Wilson [30] mentioned that Sarma [28,29] 
used an incorrect normal stress boundary condition 
in his analysis and so his results in the case of a non-
zero magnetic field and a deformable free surface 
are incorrect. Wilson [30] investigated the onset of 
Marangoni convection in the presence of uniform 
magnetic field. He showed that the presence of the 
magnetic field has a stabilizing effect on the flow 
but that certain wave numbers will always remain 
unstable to steady convection however  strong the 
magnetic field is. 

The aim of this paper is to investigate the effect 
of a non-linear relationship between  the magnetic 
induction and the magnetic field, suggested by 
Roberts [13], on Marangoni problem when the upper 
free surface is deformable. Both steady and oversta-
ble modes of instability are considered. The numeri-
cal computations are performed using the method of 
expansions of Chebyshev polynomials.  

 
 

2  Mathematical  Formulation 
Consider a horizontal thickness three dimensional 
planar layer of an incompressible, quiescent, 
thermally and electrically conducting viscous fluid 
with a deformable free upper surface and solid lower 
surface. The fluid is subjected to a constant 
gravitational acceleration in the negative x3 
direction. A constant magnetic field is imposed 
across the layer in the positive x3 direction and x1 and 
x2 axes are selected from a right-handed system of 
Cartesian coordinates in which the magnetic induct-
ion has representation 3ioi BB δ= . The geometry of 
the basic state is shown in Figure 1. 

 
In order of fully describe the nature of this 

model we need to discuss the interaction between 
electromagnetic and mechanical effects. The most 
general, properly invariant, constitutive relationship 
between the magnetic field and the magnetic 
induction has the form 

 

(1),,( iBBH oi )ϕ= ρρ 
 

where ρ is the density  of  fluid, )( iio BBB ⋅= is 
the magnitude of the magnetic induction and ϕ  is 
the magnetic susceptibility which is related to the 
partial  derivative of the magnetic free energy with 
respect to Bo (See Roberts [13]). The conventional 
magnetic permeability, µ , is given by 

.)(),( 1−ϕ= ρρµ oB  
 

The strength of the nonlinear permeability is 
measured in terms of the nondimensional magnetic 
number σ  where 
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Conventional ideas would indicate that the 
permeability is a decreasing function of Bo and so 

0≥σ . The magnetic variables are required to 
satisfy the Maxwell’s equations 
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where Vi is the velocity, Ei is the electric field, and 
where the displacement current has been neglected 
as is customary in this type of problems. The current 
density Ji is given by 

f (x1, x2, t) 
θ = TL -T ̃

                
             Liquid  layer 
                          x3 
                                                      
g 
                                               x1 
                   x2 

θ = ΤL

Bi 

d

Fig. 1 
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(3),kjijkii BVeEJ +=η 
 

where η is the magnetic resistivity which is constant. 
The governing field equations become 
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where  
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k

ρ is the 

modified pressure, tD)(D  is the convected deriv-
ative, ν  is the kinematic viscosity, θ  is the absolute 

temperature and κ is the coefficient of thermal 
diffusivity.   

We may observe that equations (2) and equati-
ons (4) have a steady state solution in which 
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where the adverse temperature gradient dT~=β  
and TL , ( TL-T̃ ) are the temperatures on the planes 

03 =x  and dx =3  respectively. 
Suppose that the basic variables are perturbed 

about their equilibrium values described in equations 
(5), then we may verify that the linearised version of 
equations (4) are 
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 On taking the (curl) of the constitutive law (3) 
and replacing the electric field by the Maxwell’s 
relation (2)3, the magnetic induction is now readily 
seen to satisfy the partial differential equation  
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By using equation (1), the linearised version of 
Maxwell’s relations (2)1,2 and (7) are 
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From equations (8)1,2,3 we obtain 
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thus the governing field equations are (6) and (9). As 
is the case in many convection problems, vector 
components parallel to the direction of gravity play a 
central role and so it is convenient to introduce the 
variables 
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Thus the third component of the governing equations 
become 
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 To simplify the analysis we introduce non-
dimensional variables. Taking the thickness of fluid 
layer d as the unit of length. Appropriate scales for 
the time, velocity, temperature gradient and magne-
tic induction are κ2d , dκ , dβ  and oB  respecti-
vely. Non-dimensionalizing, the governing equati-
ons (10) become 
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where 
κ
ν

=rp  is the mechanical Prandtl number,  

κ
ηρ ϕ

=mP  is the magnetic Prandtl number and 

ηνρ

22 dBQ o=  is the Chandrasekhar number. 

 

Equations (11) will be solved subject to the bou-
ndary conditions appropriate to a rigid, thermally 
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conducting lower boundary and an upper interface 
with deformable surface tension and a general heat 
radiation condition. At the lower boundary we have   

)12(,0and,,00, 3,33 === θVV 
 

while at the upper boundary we have 
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where ,22,11
2
H )()()( +=∇  , f is the deflection of 

the free surface, k is the coefficient of heat conduct-
ion, q is the rate of change with temperature of the 
time rate of heat loss per unit area from the upper 
surface to its upper environment, -γ  is the rate of 
change of surface tension with temperature which 
generally positive, S is the surface tension of the free 
surface and g is the acceleration due to gravity .  

We now consider the electromagnetic conditi-
ons. On a perfectly insulating electromagnetic boun-
dary, no currents can flow to the exterior region and 
the magnetic field is continues across the boundary 
with the external magnetic field being derived from 
a scalar potential. We shall associate insulating bou-
ndaries with a deformable free surface, i.e. 

0
33,3 =+ BaB  on dx =3  where a is the dimensi-

onless wave number. On the other hand if the 
adjoining boundary is a stationary perfect conductor 
then the normal component of the unsteady magnetic 
field must be zero and there can be no surface 
components of electric field. A stationary perfect 
conducting surface will be associated with rigid 
boundaries, i.e. 0

33,3 =− BaB   on 03 =x .   

We notice that in the undisturbed state the free 
surface is located at dx =3 . When motion occurs 
the free surface will be deformed and then we denote 
its position by ),,( 213 txxfdx += . After pertu-
rbation state, the third component of the boundary 
conditions at free and rigid surfaces become 
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on  .3 dx =  
 

After non-dimentionalization, the boundary con-
ditions (14) and (15) simplify to 
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on dx =3  where 
κνρ
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o
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=  is the Marangoni 

number, 
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dqNu =  is the Nusselt (or Biot) number, 
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We aim to investigate the linear stability of the 
steady solution (5) and with this aim in mind we 
construct the related eigenvalue problem from 
equations (11) and the boundary conditions (16) and 
(17). We now look for a solution of the form 

 

],)(i[exp)( 213 21
txaxax xx λ++Φ=Φ  

 

where imR i λλλ += is the growth rate of the distu-

rbance with time which in general complex and  λR 
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and λim are the real and the imaginary parts of λ thus  
equations (11) become 
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and the boundary conditions (16) and (17) become    
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on dx =3  where )()D()(L 22 a−= , 
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3  Results and Discussion 
 
3,1  Stationary  convection 
When instability appears in the form of stationary 
convection we put 0=λ  in equations (18), and if b 
is eliminated from (18)1 using (18)3 then we obtain 
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which are the same equations obtained by Wilson 
[30] and the numerical results obtained for this case 
coincide with those results obtained by him. We 
notice that the non-linear parameter σ has disappear-
red from these equations which means that the non-
linear relationship between Bi and Hi has no effect in 
the development of instabilities through the mechan-
ism of stationary convection.  
 
3,2  Overstable  convection 
The  method of expansion of Chebyshev polynomi-
als will be used to solve numerically the eigenvalue 
problem (18) subject to the boundary conditions (19) 

and (20) for both stationary and overstability cases. 
Let wL=φ  then equations (18) become 
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since the eigenvalue problem (21) is an eighth order 
and we have nine boundary conditions in (19) and 
(20) then we can use equation (20)3 to eliminate the 
free surface deflection condition. Substituting from 
free surface deflection in the upper boundary condit-
ions (19)1,2,4 these conditions become 
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The Chebyshev expansion of the basic variables are   
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)()4C()(V 22 a−=  and yd)(dC = . And where I 
is the identity matrix. This system is solved numeric-
ally using the Nag routine (F02BJF) . 

We now examine the overstable case, and that 
corresponds to the case when 0)( =λIm , when the 
free surface is deformable, i.e. 0≠C r . Since the 
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marginal stability curves for overstable convection 
are more complicated than those of steady convect-
ion then a great reliance has to be placed on numeri-
cal calculations. 

In obtaining our results we first calculate the 
Marangoni number for various assigned values of the 
wave number, a , for specific values of Pr , Pm , Nu , 
Bond , Cr , Q and σ . Then we make use of those 
results to calculate the critical Marangoni numbers 
Mc When Q = 0, σ  has no effect. 

Figures 2(a) and 2(b) show the marginal stability 
curves and the corresponding values of  λim plotted as 
functions of the wave number, a, in the case when  
Cr = Pr = Pm = 1 and Bond = Nu = 0. The  marginal 
stability curves form infinitely many loops, two of 
them are shown in the figures, which lie entirely in 
the negative M–domain and extend to −∞→M  as 

0→a . Since the region inside the loops correspond 
to unstable disturbances we can identity the critical 
maximum value of 716.1012≈M  at 2821.0≈a  and 

570.6λ ≈im .  
Increasing Q from zero show the effect of the 

non-linear parameter, σ . In fact when Q = 1, 0≠σ  
the value of the Marangoni number decreases which 
means that the non-linear relation between Bi and Hi 
has a stabilizing effect. This effect is prominent as 
the value of σ increases. The critical maximum 
values of M for σ  = 0, 2, 4, 6, 8 and 10 are listed in 
table 1.  

The marginal stability curve when Q = 10,        
Cr = 0.0001, Pr  = Pm = 1  and Bond  = Nu = 0. is just a 
single closed loop with finite maximum and 
minimum values. The critical maximum and 
minimum values of M for σ  = 0, 2, 4, 6, 8 and 10 are 
listed in table 2. 

Figures 3(a) and 3(b) show the complete 
numerically calculated, marginal stability curves and 
the corresponding values of λim plotted as functions 
of  a in case Q = 100, Cr = 0.0001, Pr  = Pm = 1 and 
Bond = Nu = 0 for σ  = 0, 6 and 10. Here the marginal 
stability curve form two distinct closed loops each 
with a finite maximum and minimum values and so 
there are two ranges of values of M in which unstable 
disturbances exist.. In each case of σ  we can identity 
the critical maximum and minimum of the marginal 
stability curves. These results are listed in table 3. 

Increasing Q further so that Q =1000 and          
Cr = 0.0001, the marginal stability curves disappear 
altogether and all disturbances are stable for any 
value of the non-linear parameter σ .  

 

4  Conclusion 
The effect of a non-linear relation, suggested by 
Roberts [13], between the magnetic field and the 
magnetic induction is investigated when the upper 
free surface is a deformable and the lower surface is 
a solid plate. This non-linearity has no effect on the 
development of instabilities through stationary 
convection but effect the development of instabilities 
through oscillatory convection. Moreover it appears 
that the nature of the neutral state in this problem is 
of a stationary and oscillatory pattern. The numerical 
results were obtained using the method of expansion 
of Chebyshev polynomials. The results obtained 
show more accurate values over a large range of the 
magnetic parameter and extend similar results 
obtained by Wilson [30].  
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 Fig. 2: Typical marginal stability curves for 
overstable convection and the corresponding value 
λim for any value of σ  when Q = 0, Cr = Pr = Pm = 1 
and Bond  = Nu = 0. 
 

Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp59-67)



 7

(a)

1.E+03

1.E+04

1.E+05

1.E+06

1 2 3 4 5 6

 a

- M

σ = 0

σ = 6

σ = 10

 

(b)

0

500

1000

1500

1 2 3 4 5 6 a

 λ
 im

σ = 0

σ = 6 

σ = 10

 
Fig. 3: Typical marginal stability curves for 

overstable convection and the corresponding value 
λim for any value of σ  when Q = 100, Cr= 0.0001, 
Pr = Pm = 1 and  Bond  = Nu = 0. 
 
 

σ  = ≈M c  ≈a  ≈imλ  

0 -1787.342 0.2374 7.300 
2 -1805.057 0.2367 7.318 
4 -1825.025 0.2359 7.336 
6 -1847.094 0.2349 7.354 
8 -1871.107 0.2338 7.371 

10 -1896.905 0.2320 7.387 

Table 1: The critical maximum values of M and 
the corresponding values of λimfor different values 
of σ  when Q =1, Cr  = Pr  = Pm = 1 and Bond  = Nu  = 0. 
 
 
 
 
 

σ = ≈M c  ≈a  ≈imλ  

Max -1987.733 0.456 22.4835 0 
Min -150450.097 5.05292 1526.9388
Max -2025.741 0.457 22.7008 2 
Min -150311.398 5.05291 1526.5410
Max -2067.625 0.459 22.9274 4 
Min -150137.470 5.05293 1526.0293
Max -2113.376 0.460 23.1628 6 
Min -149929.582 5.5297 1525.4019
Max -2162.951 0.461 23.4068 8 
Min -149689.448 5.05293 1524.6336
Max -2216.307 0.462 23.6593 10 
Min -149418.675 5.05291 1523.759 

Table 2: The critical maximum and minimum 
values of  M  and the corresponding values of  λim  

for different values of σ  when Q = 10, Cr = 0.0001,  
Pr  = Pm  = 1  and  Bond  = Nu = 0. 
 
 

σ = ≈M c
loopbig )(

 ≈a  ≈imλ  

Max -16455.716 1.3836 169.19241 0 
Min -117442.718 4.5801 1254.7311 
Max -17123.875 1.4041 174.6240 2 
Min -115757.961 4.5362 1235.6978 
Max -18030.532 1.4328 181.9342 4 
Min -113598.223 4.4785 1210.7211 
Max -19213.237 1.4709 191.4690 6 
Min -110934.897 4.4236 1185.1845 
Max -20727.799 1.5206 203.8207 8 
Min -107673.866 4.3764 1160.393 
Max -22657.858 1.5857 219.9828 10 
Min -103981.795 4.2148 1098.1191 

σ = ≈M c
loopsmall )(

 ≈a  ≈imλ  

Max -4746.330 0.6065 49.7729 0 
Min -11025.177 0.5010 49.7146 
Max -5109.800 0.6063 49.0493 2 
Min -11410.922 0.5010 50.5710 
Max -5505.036 0.6062 49.8023 4 
Min -11830.493 0.5010 51.4568 
Max -5936.017 0.6061 50.5848 6 
Min -12285.809 0.5010 52.3721 
Max -6404.848 0.6060 51.3969 8 
Min -12778.975 0.5010 53.3170 
Max -6913.905 0.6058 52.2392 10 
Min -13312.347 0.5010 54.2921 

Table 3: The critical maximum and minimum  
values of  M  and the corresponding values of  λim 
for different values of σ  when Q = 100, Cr = 0.0001,  
Pr  =  Pm  = 1 and  Bond  = Nu  = 0. 
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